scholarly journals Anderson-Bogoliubov phonons in the inner crust of neutron stars: Dipole excitation in a spherical Wigner-Seitz cell

2017 ◽  
Vol 96 (2) ◽  
Author(s):  
Tsunenori Inakura ◽  
Masayuki Matsuo
Author(s):  
Toshiyuki Okihashi ◽  
Masayuki Matsuo

Abstract We study proximity effect of pair correlation in the inner crust of neutron stars by means of the Skyrme-Hartree-Fock-Bogoliubov theory formulated in the coordinate space. We describe a system composed of a nuclear cluster immersed in neutron superuid, which is confined in a spherical box. Using a density-dependent effective pairing interaction which reproduces both the pair gap of neutron matter obtained in ab initio calculations and that of finite nuclei, we analyze how the pair condensate in neutron superuid is affected by the presence of the nuclear cluster. It is found that the proximity effect is characterized by the coherence length of neutron superuid measured from the edge position of the nuclear cluster. The calculation predicts that the proximity effect has a strong density dependence. In the middle layers of the inner crust with baryon density 5 × 10-4 fm-3 ≲ ρb ≲ 2 × 10-2 fm-3, the proximity effect is well limited in the vicinity of the nuclear cluster, i.e. in a sufficiently smaller area than the Wigner-Seitz cell. On the contrary, the proximity effect is predicted to extend to the whole volume of the Wigner-Seitz cell in shallow layers of the inner crust with ρb ≲ 2 × 10-4 fm-3, and in deep layers with ρb ≲ 5 × 10-2 fm-3.


2021 ◽  
Vol 923 (2) ◽  
pp. 250
Author(s):  
Min Ju ◽  
Jinniu Hu ◽  
Hong Shen

Abstract The structured hadron-quark mixed phase, known as the pasta phase, is expected to appear in the core of massive neutron stars. Motivated by the recent advances in astrophysical observations, we explore the possibility of the appearance of quarks inside neutron stars and check its compatibility with current constraints. We investigate the properties of the hadron-quark pasta phases and their influences on the equation of state (EOS) for neutron stars. In this work, we extend the energy minimization (EM) method to describe the hadron-quark pasta phase, where the surface and Coulomb contributions are included in the minimization procedure. By allowing different electron densities in the hadronic and quark matter phases, the total electron chemical potential with the electric potential remains constant, and local β equilibrium is achieved inside the Wigner–Seitz cell. The mixed phase described in the EM method shows the features lying between the Gibbs and Maxwell constructions, which is helpful for understanding the transition from the Gibbs construction to the Maxwell construction with increasing surface tension. We employ the relativistic mean-field model to describe the hadronic matter, while the quark matter is described by the MIT bag model with vector interactions. It is found that the vector interactions among quarks can significantly stiffen the EOS at high densities and help enhance the maximum mass of neutron stars. Other parameters like the bag constant can also affect the deconfinement phase transition in neutron stars. Our results show that hadron-quark pasta phases may appear in the core of massive neutron stars that can be compatible with current observational constraints.


1973 ◽  
Vol 110 (7) ◽  
pp. 441 ◽  
Author(s):  
Ya.B. Zel'dovich
Keyword(s):  

1999 ◽  
Vol 169 (8) ◽  
pp. 825 ◽  
Author(s):  
Dmitrii G. Yakovlev ◽  
Kseniya P. Levenfish ◽  
Yurii A. Shibanov
Keyword(s):  

1998 ◽  
Vol 503 (1) ◽  
pp. 368-373 ◽  
Author(s):  
Juan A. Miralles ◽  
Vadim Urpin ◽  
Denis Konenkov

Sign in / Sign up

Export Citation Format

Share Document