scholarly journals Hadron-quark Pasta Phase in Massive Neutron Stars

2021 ◽  
Vol 923 (2) ◽  
pp. 250
Author(s):  
Min Ju ◽  
Jinniu Hu ◽  
Hong Shen

Abstract The structured hadron-quark mixed phase, known as the pasta phase, is expected to appear in the core of massive neutron stars. Motivated by the recent advances in astrophysical observations, we explore the possibility of the appearance of quarks inside neutron stars and check its compatibility with current constraints. We investigate the properties of the hadron-quark pasta phases and their influences on the equation of state (EOS) for neutron stars. In this work, we extend the energy minimization (EM) method to describe the hadron-quark pasta phase, where the surface and Coulomb contributions are included in the minimization procedure. By allowing different electron densities in the hadronic and quark matter phases, the total electron chemical potential with the electric potential remains constant, and local β equilibrium is achieved inside the Wigner–Seitz cell. The mixed phase described in the EM method shows the features lying between the Gibbs and Maxwell constructions, which is helpful for understanding the transition from the Gibbs construction to the Maxwell construction with increasing surface tension. We employ the relativistic mean-field model to describe the hadronic matter, while the quark matter is described by the MIT bag model with vector interactions. It is found that the vector interactions among quarks can significantly stiffen the EOS at high densities and help enhance the maximum mass of neutron stars. Other parameters like the bag constant can also affect the deconfinement phase transition in neutron stars. Our results show that hadron-quark pasta phases may appear in the core of massive neutron stars that can be compatible with current observational constraints.

2003 ◽  
Vol 18 (32) ◽  
pp. 2255-2264 ◽  
Author(s):  
O. A. Battistel ◽  
G. Krein

Chiral symmetry breaking at finite baryon density is usually discussed in the context of quark matter, i.e. a system of deconfined quarks. Many systems like stable nuclei and neutron stars however have quarks confined within nucleons. In this paper we construct a Fermi sea of three-quark nucleon clusters and investigate the change of the quark condensate as a function of baryon density. We study the effect of quark clustering on the in-medium quark condensate and compare results with the traditional approach of modeling hadronic matter in terms of a Fermi sea of deconfined quarks.


2019 ◽  
Vol 28 (05) ◽  
pp. 1950034
Author(s):  
Prafulla K. Panda ◽  
Constança Providência ◽  
Steven A. Moszkowski ◽  
Henrik Bohr ◽  
João da Providência

We generalize the Bogoliubov quark-meson coupling (QMC) model to also include hyperons. The hyperon-[Formula: see text]-meson couplings are fixed by the model and the hyperon-[Formula: see text]-meson couplings are fitted to the hyperon potentials in symmetric nuclear matter. The present model predicts neutron stars with masses above 2[Formula: see text] and the radius of a 1.4[Formula: see text] star [Formula: see text]14[Formula: see text]km. In the most massive stars, bags overlap at the core of the star, and this may be interpreted as a transition to deconfined quark matter.


2012 ◽  
Vol 12 ◽  
pp. 350-357
Author(s):  
HYUN KYU LEE

For a dense stellar matter, it is generally expected that as density increases, new degrees of freedom will emerge as the electron chemical potential becomes comparable to their energy scales. We discuss the nature of symmetry energy, which measures the energy relevant to the neutron-proton asymmetry and more importantly determines the electron chemical potential in weak equilibrium. The possible structure of compact stars with strangeness is briefly discussed for the case of kaon condensation.


2020 ◽  
Author(s):  
◽  
Germán Malfatti

This thesis work focuses on studying the possible existence of phase transitions in the immediate compact remnants of core collapse supernova, neutron stars, and the theoretical models that describe the interior of dense matter. Specifically, we are interested in analyzing the feasibility of a transition from hadronic matter to quark matter in the cores of these objects. The density of matter inside neutron stars is several times that of atomic nuclei, and the equation of state that describes such matter in such a regime is still unknown. In this context, it is known that the interaction between the constituents of nucleons, the quarks, weakens with increasing density due to the intrinsic property of the QCD known as it asymptotic freedom. Therefore, matter should either dissolve into a quark-free state at high densities, or else form a superconduct- ing state of color. This superconducting phase of color would be energetically favorable, if it were present in a cold neutron star, since a system of fermions that interact weakly at low temperature is unstable with respect to the formation of Cooper pairs. Although it is impossible to know both theoretically and experimentally whether these phases exist in neutron stars, the interpolation of the resolvable part of QCD at high densities, together with the hadronic equations of state at low densities, suggest that they could appear in the interior of compact objects. For the phase transition we will use two different formalisms: the Maxwell formalism, in which an abrupt phase transition between hadronic and quark matter without mixed phase formation is assumed, and the Gibbs formalism, in which a mixed phase in which hadrons and quarks coexist. For the description of hadronic matter, we will use different parametrizations of the relativistic mean field model with density-dependent coupling constants. For the description of quark matter we will use an effective nonlocal Nambu Jona-Lasinio model of three flavors with vector interactions, in which we will include the possibility of formation of diquarks to model a superconducting phase of color in SU (3), which we will call 2SC + s. Phase diagrams and equations of state of quark matter at finite temperature are presented, and the influence of that kind of matter on observables associated with neutron stars is investigated. Likewise, using hybrid equations of state, the simplified thermal evolution of compact stars during their formation is studied, from their state of proto-neutron stars to that of cold neutron stars, and the results obtained are compared with recent astrophysical observations. The pa- rameterizations used in this work are adjusted to the most recent measurements of masses and coupling constants of the QCD, which imposes strong restrictions on the existence of quark matter in proto-stars, unlike what happens with less realistic models or with more free parameters. However, the results obtained indicate that even considering these restrictions, the occurrence of quark matter in the nuclei of these stars remains a promis- ing possibility. The remaining free parameters of the models were adjusted taking into account the observational restrictions, coming from precise determinations of the pulsars masses of ∼ 2 M⊙, and the event corresponding to the fusion of two neutron stars, known as GW170817. The fact that the use of more realistic models for the description of the dense matter in these objects indicates the presence of quark matter inside neutron stars, could be an answer to the question of the behavior of that kind of matter and the determination of its corresponding equation of state.


2019 ◽  
Vol 79 (10) ◽  
Author(s):  
B. Eslam Panah ◽  
T. Yazdizadeh ◽  
G. H. Bordbar

Abstract Motivated by importance of the existence of quark matter on structure of neutron star. For this purpose, we use a suitable equation of state (EoS) which include three different parts: (i) a layer of hadronic matter, (ii) a mixed phase of quarks and hadrons, and, (iii) a strange quark matter in the core. For this system, in order to do more investigation of the EoS, we evaluate energy, Le Chatelier’s principle and stability conditions. Our results show that the EoS satisfies these conditions. Considering this EoS, we study the effect of quark matter on the structure of neutron stars such as maximum mass and the corresponding radius, average density, compactness, Kretschmann scalar, Schwarzschild radius, gravitational redshift and dynamical stability. Also, considering the mentioned EoS in this paper, we find that the maximum mass of hybrid stars is a little smaller than that of the corresponding pure neutron star. Indeed the maximum mass of hybrid stars can be quite close to the pure neutron stars. Our calculations about the dynamical stability show that these stars are stable against the radial adiabatic infinitesimal perturbations. In addition, our analyze indicates that neutron stars are under a contraction due to the existence of quark core.


2015 ◽  
Vol 24 (12) ◽  
pp. 1550096 ◽  
Author(s):  
K. Mohanta ◽  
N. R. Panda ◽  
P. K. Sahu

Compact neutron stars (NSs) can consist of either hadronic matter or strange quark matter or exotic color superconducting matter. If the stars have a quark core and are surrounded by hadronic matter, they are called hybrid stars (HSs). The HS is a mixture of the hadron and exotic quark phases. Observational results suggest that magnetars are certain NSs having huge surface magnetic field. We calculate equation of states (EOSs) of hadronic and quark matter at high densities in the presence of strong magnetic field and then study the quark–hadron phase having mixed phase in between giving rise to hybrid star. The intermediate mixed phase is constructed based on the Glendenning conjecture. The magnetic field significantly affects the EOS of the matter if the field strength is above [Formula: see text]G. We also calculate HS structure parameters such as the maximum mass, radius, moment of inertia, fundamental period and surface redshift and compare them specially the maximum mass with the recent observation of pulsars PSR 1903+0327 and PSR J1614-2230. The observation restricts a severe constraint on the EOS of matter at extreme conditions.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 124 ◽  
Author(s):  
Grigor Alaverdyan

We study the hadron–quark hybrid equation of state (EOS) of compact-star matter. The Nambu–Jona-Lasinio (NJL) local SU (3) model with vector-type interaction is used to describe the quark matter phase, while the relativistic mean field (RMF) theory with the scalar-isovector δ-meson effective field is adopted to describe the hadronic matter phase. It is shown that the larger the vector coupling constant GV, the lower the threshold density for the appearance of strange quarks. For a sufficiently small value of the vector coupling constant, the functions of the mass dependence on the baryonic chemical potential have regions of ambiguity that lead to a phase transition in nonstrange quark matter with an abrupt change in the baryon number density. We show that within the framework of the NJL model, the hypothesis on the absolute stability of strange quark matter is not realized. In order to describe the phase transition from hadronic matter to quark matter, Maxwell’s construction is applied. It is shown that the greater the vector coupling, the greater the stiffness of the EOS for quark matter and the phase transition pressure. Our results indicate that the infinitesimal core of the quark phase, formed in the center of the neutron star, is stable.


2007 ◽  
Vol 16 (02n03) ◽  
pp. 333-339 ◽  
Author(s):  
G. F. MARRANGHELLO

We review the properties of a phase transition from hadronic matter to deconfined strange quark matter in the core of neutron stars. The neutron star equation of state is computed using a non-linear field theoretical model and the MIT bag model. Rapidly rotating neutron star configurations are studied and the consequences of the conversion and a subsequently micro-collapse, such as gravitational wave emission and pulsar spin-up, are analyzed.


2019 ◽  
Vol 28 (02) ◽  
pp. 1950040 ◽  
Author(s):  
Debashree Sen ◽  
T. K. Jha

We explore the possibility of formation of [Formula: see text] baryons (1232[Formula: see text]MeV) in neutron star matter in an effective chiral model within the relativistic mean-field framework. With variation in delta-meson couplings, consistent with the constraints imposed on them, the resulting equation-of-state (EoS) is obtained and the neutron star properties are calculated for static and spherical configuration. Within the framework of our model, the critical densities of formation of [Formula: see text] and the properties of neutron stars (NS) are found to be very sensitive to the iso-vector coupling compared to the scalar or vector couplings. We revisit the [Formula: see text] puzzle and look for the possibility of phase transition from nonstrange hadronic matter (including nucleons and [Formula: see text]) to deconfined quark matter, based on QCD theories. The resultant hybrid star configurations satisfy the observational constraints on mass from the most massive pulsars PSR J1614-2230 and PSR J0348+0432 in static condition obtained with the general hydrostatic equilibrium based on GTR. Our radius estimates are well within the limits imposed from observational analysis of QLMBXs. The obtained values of [Formula: see text] are in agreement with the recent bounds specified from the observation of gravitational wave (GW170817) from binary neutron star merger. The constraint on baryonic mass from the study of binary system PSR J0737-3039 is also satisfied with our hybrid EoS.


Sign in / Sign up

Export Citation Format

Share Document