em method
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 49)

H-INDEX

16
(FIVE YEARS 4)

Author(s):  
Sugondo Hadiyoso ◽  
Heru Nugroho ◽  
Tati Latifah Erawati Rajab ◽  
Kridanto Surendro

The development of a mesh topology in multi-node electrocardiogram (ECG) monitoring based on the ZigBee protocol still has limitations. When more than one active ECG node sends a data stream, there will be incorrect data or damage due to a failure of synchronization. The incorrect data will affect signal interpretation. Therefore, a mechanism is needed to correct or predict the damaged data. In this study, the method of expectation-maximization (EM) and regression imputation (RI) was proposed to overcome these problems. Real data from previous studies are the main modalities used in this study. The ECG signal data that has been predicted is then compared with the actual ECG data stored in the main controller memory. Root mean square error (RMSE) is calculated to measure system performance. The simulation was performed on 13 ECG waves, each of them has 1000 samples. The simulation results show that the EM method has a lower predictive error value than the RI method. The average RMSE for the EM and RI methods is 4.77 and 6.63, respectively. The proposed method is expected to be used in the case of multi-node ECG monitoring, especially in the ZigBee application to minimize errors.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 490
Author(s):  
Shande Li ◽  
Di Xu ◽  
Xiaoxun Wu ◽  
Renjie Jiang ◽  
Geman Shi ◽  
...  

The existing sandwich structure of the aircraft cabin demonstrates a good sound insulation effect in medium and high frequency bands, but poor in the low frequency band. Therefore, we propose an infinite new lightweight broadband noise control structure and study its sound transmission loss (STL). The structure is an orthogonally rib-stiffened honeycomb double sandwich structure with periodic arrays of shunted piezoelectric patches, and demonstrates lighter mass and better strength than the existing sandwich structure. The structure is equivalent according to Hoff’s equal stiffness theory and the effective medium (EM) method. Using the virtual work principle for a periodic element, two infinite sets of coupled equations are obtained. They are solved by truncating them in a finite range until the solution converges. The correctness and validity of the model are verified by using simulation results and theoretical predictions. Eventually, a further study is performed on the factors influencing the STL. All the results demonstrate that the STL in low-frequency can be improved by the structure, and the sound insulation bandwidth is significantly broadened by adding shunted piezoelectric patches. The structure can provide a new idea for the design of broadband sound insulation.


Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 26
Author(s):  
Philipp O. Kotowski ◽  
Michael Becken ◽  
Anneke Thiede ◽  
Volkmar Schmidt ◽  
Jörg Schmalzl ◽  
...  

The semi-airborne electromagnetic (EM) method has the potential to reach deeper exploration depths than purely airborne EM approaches. The concept of the method is to deploy high-power transmitters on the ground, which excite subsurface currents and induce strong magnetic fields, and to measure the corresponding EM fields with a passive airborne receiver instrument. Following recent conceptual developments of the semi-airborne EM technique deployed on helicopters, we performed a 10 km2 semi-airborne EM survey near Münster (Germany) based on a multicopter aircraft system. For this purpose, horizontal electric dipole (HED) transmitters were installed in the survey area and were surveyed individually. Magnetic transfer functions were determined and a model of the conductivity of the study area was derived. Despite restrictions such as low payload capacity and multicopter-related EM noise, we were able to estimate spatially and spectrally consistent transfer functions of high quality up to a distance of 2 km from the respective transmitter. Our results could be validated with independent results from a magnetotelluric and a direct current sounding. The study demonstrates that an unmanned aircraft system (UAS) is suitable for semi-airborne EM application and that such a system can be beneficial where ground-based methods and manned techniques become impractical.


2022 ◽  
Vol 17 (01) ◽  
pp. P01009
Author(s):  
K. Chaiwongkhot ◽  
T. Kin ◽  
Y. Nagata ◽  
T. Komori ◽  
N. Okamoto ◽  
...  

Abstract A feasibility demonstration of three-dimensional (3D) muon tomography was performed for infrastructure equivalent targets using the proposed portable muography detector. For the target, we used two sets of lead blocks placed at different heights. The detector consists of two muon position-sensitive detectors, made of plastic scintillating fibers (PSFs) and multi-pixel photon counters (MPPCs) with an angular resolution of 8 msr. In this work, the maximum likelihood-expectation maximization (ML-EM) method was used for the 3D imaging reconstruction of the muography. For both simulation and experiment, the reconstructed positions of the blocks produce consistent results with prior knowledge of the blocks' arrangement. This result demonstrates the potential of the 3D tomographic imaging of infrastructure by using seven detection positions for portable muography detectors to image infrastructure scale targets.


2021 ◽  
Vol 14 (1) ◽  
pp. 26
Author(s):  
Weixin Li ◽  
Ming Li ◽  
Lei Zuo ◽  
Hao Sun ◽  
Hongmeng Chen ◽  
...  

Traditional forward-looking super-resolution methods mainly concentrate on enhancing the resolution with ground clutter or no clutter scenes. However, sea clutter exists in the sea-surface target imaging, as well as ground clutter when the imaging scene is a seacoast.Meanwhile, restoring the contour information of the target has an important effect, for example, in the autonomous landing on a ship. This paper aims to realize the forward-looking imaging of a sea-surface target. In this paper, a multi-prior Bayesian method, which considers the environment and fuses the contour information and the sparsity of the sea-surface target, is proposed. Firstly, due to the imaging environment in which more than one kind of clutter exists, we introduce the Gaussian mixture model (GMM) as the prior information to describe the interference of the clutter and noise. Secondly, we fuse the total variation (TV) prior and Laplace prior, and propose a multi-prior to model the contour information and sparsity of the target. Third, we introduce the latent variable to simplify the logarithm likelihood function. Finally, to solve the optimal parameters, the maximum posterior-expectation maximization (MAP-EM) method is utilized. Experimental results illustrate that the multi-prior Bayesian method can enhance the azimuth resolution, and preserve the contour information of the sea-surface target.


2021 ◽  
Vol 10 (1) ◽  
pp. 18
Author(s):  
Simone Berto ◽  
Emanuel Demetrescu ◽  
Bruno Fanini ◽  
Jacopo Bonetto ◽  
Giuseppe Salemi

In this work, we will describe the application of the Extended Matrix Framework (EMF) to the 3D reconstruction of the temple on the Roman forum of Nora. EMF represents a specific section of the Extended Matrix (EM) method, developed by the VHLab of the CNR ISPC (Rome), dedicated to the development of software solutions for 3D data management in the field of virtual reconstruction. The combination of EM and EMF allows to: map the reconstructive process, validate the entire workflow (from data ingestion to 3D modelling), manage 3D data, and share outcomes online.


2021 ◽  
Vol 923 (2) ◽  
pp. 250
Author(s):  
Min Ju ◽  
Jinniu Hu ◽  
Hong Shen

Abstract The structured hadron-quark mixed phase, known as the pasta phase, is expected to appear in the core of massive neutron stars. Motivated by the recent advances in astrophysical observations, we explore the possibility of the appearance of quarks inside neutron stars and check its compatibility with current constraints. We investigate the properties of the hadron-quark pasta phases and their influences on the equation of state (EOS) for neutron stars. In this work, we extend the energy minimization (EM) method to describe the hadron-quark pasta phase, where the surface and Coulomb contributions are included in the minimization procedure. By allowing different electron densities in the hadronic and quark matter phases, the total electron chemical potential with the electric potential remains constant, and local β equilibrium is achieved inside the Wigner–Seitz cell. The mixed phase described in the EM method shows the features lying between the Gibbs and Maxwell constructions, which is helpful for understanding the transition from the Gibbs construction to the Maxwell construction with increasing surface tension. We employ the relativistic mean-field model to describe the hadronic matter, while the quark matter is described by the MIT bag model with vector interactions. It is found that the vector interactions among quarks can significantly stiffen the EOS at high densities and help enhance the maximum mass of neutron stars. Other parameters like the bag constant can also affect the deconfinement phase transition in neutron stars. Our results show that hadron-quark pasta phases may appear in the core of massive neutron stars that can be compatible with current observational constraints.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hun Jun Ha ◽  
Ho Kyung Ha

Erosion of cohesive sediments is a ubiquitous phenomenon in estuarine and intertidal environments. Several methods have been proposed to determine the surface erosion threshold (τc0), which are still debatable because of the numerous and uncertain definitions. Based on erosion microcosm experiments, we have compared three different methods using (1) eroded mass (EM), (2) erosion rate (ER), and (3) suspended sediment concentration (SSC), and suggested a suitable method for revealing the variation of erodibility in intertidal sediments. Erosion experiments using a microcosm system were carried out in the Muuido tidal flat, west coast of South Korea. The mean values of τc0 for three methods were: 0.20 ± 0.08 Pa (EM); 0.18 ± 0.07 Pa (ER); and (3) 0.17 ± 0.09 Pa (SSC). The SSC method yielded the lowest τc0, due to the outflow of suspended sediment from the erosion chamber of the microcosm. This was because SSC gradually decreased with time after depleting the erodible sediment at a given bed shear stress (τb). Therefore, the regression between SSC and applied τb might skew an x-intercept, resulting in the underestimation (or “not-determined”) of τc0. The EM method yielded robust and accurate (within the range of τb step at which erosion begins) results. The EM method represents how the erodible depth thickens as τb increases and therefore seems better suited than the SSC and ER methods for representing depth-limited erosion of cohesive sediments. Furthermore, this study identified the spatiotemporal variations of τc0 by EM method in an intertidal flat. The τc0 in mud flat was about two times higher than that in mixed flat. Compared to the end of tidal emersion, the sediment was 10–40% more erodible at the beginning stage.


2021 ◽  
Vol 21 (3) ◽  
pp. 227-234
Author(s):  
Olga Lazko ◽  
Nataliia Byshevets ◽  
Vitalii Kashuba ◽  
Yuliia Lazakovych ◽  
Igor Grygus ◽  
...  

The purpose of the article is to study prerequisites for the development of preventive measures against office syndrome among women of working age.  Material and methods. The research involved 52 female office employees 21 to 57 years old.  Results. The extended clustering of the original data using EM method with the performance of V-fold crosschecking has shown that female office employees are clearly divided into two clusters depending on the manifestation of office syndrome. Despite our assumptions, their division does not depend on age or length of service in the office, but on the manifestation of office syndrome and behavioral characteristics in the work process. Women assigned to different clusters are characterized by statistically significant (p < 0.05) differences between the level of pain in the joints and spine. The research has found that among female office employees with increased musculoskeletal pain, there are statistically significantly (p<0.05) more women with significant overweight and spinal diseases. They are less likely to take active breaks when working at a computer and a larger percentage of them use information technology for entertainment purposes outside the office for 3-4 hours a day. However, a smaller percentage of them work with a PC for more than 7 hours a day. Women with predominant musculoskeletal pain differ in their lifestyle and point to fundamentally different reasons that stop them from taking measures to prevent the risk of occupational diseases. In particular, among female office employees with no office syndrome, a statistically significant (p<0.05) larger share does not need to expand knowledge about the organization of health care in the office and among them the share of those who lead a passive lifestyle predominates.  Conclusions. Thus, these women are potentially at risk of developing office syndrome and, with the absence of preventive measures, are expected to move to the cluster of women with signs of office syndrome. The results of the research indicate the need for different approaches to planning health measures in the work environment, depending on the presence of office syndrome and the level of their responsible attitude to health in the work process.


Sign in / Sign up

Export Citation Format

Share Document