scholarly journals Glauber model for a small system using the anisotropic and inhomogeneous density profile of a proton

2020 ◽  
Vol 101 (1) ◽  
Author(s):  
Suman Deb ◽  
Golam Sarwar ◽  
Dhananjaya Thakur ◽  
Pavish S. ◽  
Raghunath Sahoo ◽  
...  
2021 ◽  
Author(s):  
Suman Deb ◽  
Golam Sarwar ◽  
Dhananjaya Thakur ◽  
Pavish S. ◽  
Raghunath Sahoo ◽  
...  

1991 ◽  
Vol 9 (2) ◽  
pp. 477-492 ◽  
Author(s):  
Guy Bonnaud ◽  
Denis Pesme ◽  
René Pellat

The behavior of the stimulated Raman scattering is investigated in a laser-irradiated plasma with an inhomogeneous density profile, by means of wave-coupling simulations. In the case of a regular hydrodynamic-like profile, a spectral broadening is observed when the laser irradiance is increased and is found to result from a coupling between the convective and the absolute Raman scattering, via pump depletion. In the case where a short-scale modulation of the density is superimposed on the profile, the spectrum is strongly influenced by the propagation velocity of the modulation and by the sinusoidal/chaotic nature of the modulation.


1997 ◽  
Vol 91 (4) ◽  
pp. 761-767 ◽  
Author(s):  
D. HENDERSON ◽  
S. SOKOŁOWSKI ◽  
R. ZAGORSKI ◽  
A. TROKHYMCHUK

1981 ◽  
Vol 64 (11) ◽  
pp. 68-74
Author(s):  
Isamu Nagano ◽  
Masayoshi Mambo ◽  
Tetsuo Fukami ◽  
Koji Namba ◽  
Iwane Kimura

1983 ◽  
Vol 100 ◽  
pp. 145-146
Author(s):  
A. H. Nelson ◽  
T. Matsuda ◽  
T. Johns

Numerical calculations of spiral shocks in the gas discs of galaxies (1,2,3) usually assume that the disc is flat, i.e. the gas motion is purely horizontal. However there is abundant evidence that the discs of galaxies are warped and corrugated (4,5,6) and it is therefore of interest to consider the effect of the consequent vertical motion on the structure of spiral shocks. If one uses the tightly wound spiral approximation to calculate the gas flow in a vertical cut around a circular orbit (i.e the ⊝ -z plane, see Nelson & Matsuda (7) for details), then for a gas disc with Gaussian density profile in the z-direction and initially zero vertical velocity a doubly periodic spiral potential modulation produces the steady shock structure shown in Fig. 1. The shock structure is independent of z, and only a very small vertical motion appears with anti-symmetry about the mid-plane.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Vikram S. Dharodi ◽  
Amita Das

Rayleigh–Taylor (RT) and buoyancy-driven (BD) instabilities are driven by gravity in a fluid system with inhomogeneous density. The paper investigates these instabilities for a strongly coupled dusty plasma medium. This medium has been represented here in the framework of the generalized hydrodynamics (GHD) fluid model which treats it as a viscoelastic medium. The incompressible limit of the GHD model is considered here. The RT instability is explored both for gradual and sharp density gradients stratified against gravity. The BD instability is discussed by studying the evolution of a rising bubble (a localized low-density region) and a falling droplet (a localized high-density region) in the presence of gravity. Since both the rising bubble and falling droplet have symmetry in spatial distribution, we observe that a falling droplet process is equivalent to a rising bubble. We also find that both the gravity-driven instabilities get suppressed with increasing coupling strength of the medium. These observations have been illustrated analytically as well as by carrying out two-dimensional nonlinear simulations. Part 2 of this paper is planned to extend the present study of the individual evolution of a bubble and a droplet to their combined evolution in order to understand the interaction between them.


2021 ◽  
Vol 9 ◽  
Author(s):  
M. Turner ◽  
A. J. Gonsalves ◽  
S. S. Bulanov ◽  
C. Benedetti ◽  
N. A. Bobrova ◽  
...  

Abstract We measured the parameter reproducibility and radial electron density profile of capillary discharge waveguides with diameters of 650 $\mathrm{\mu} \mathrm{m}$ to 2 mm and lengths of 9 to 40 cm. To the best of the authors’ knowledge, 40 cm is the longest discharge capillary plasma waveguide to date. This length is important for $\ge$ 10 GeV electron energy gain in a single laser-driven plasma wakefield acceleration stage. Evaluation of waveguide parameter variations showed that their focusing strength was stable and reproducible to $<0.2$ % and their average on-axis plasma electron density to $<1$ %. These variations explain only a small fraction of laser-driven plasma wakefield acceleration electron bunch variations observed in experiments to date. Measurements of laser pulse centroid oscillations revealed that the radial channel profile rises faster than parabolic and is in excellent agreement with magnetohydrodynamic simulation results. We show that the effects of non-parabolic contributions on Gaussian pulse propagation were negligible when the pulse was approximately matched to the channel. However, they affected pulse propagation for a non-matched configuration in which the waveguide was used as a plasma telescope to change the focused laser pulse spot size.


2006 ◽  
Vol 46 (9) ◽  
pp. S693-S707 ◽  
Author(s):  
P Varela ◽  
M.E Manso ◽  
A Silva ◽  
the CFN Team ◽  
the ASDEX Upgrade Team

2002 ◽  
Vol 568 (2) ◽  
pp. 488-499 ◽  
Author(s):  
Masamune Oguri ◽  
Atsushi Taruya ◽  
Yasushi Suto ◽  
Edwin L. Turner

Sign in / Sign up

Export Citation Format

Share Document