scholarly journals Earth-mass primordial black hole mergers as sources for nonrepeating fast radio bursts

2021 ◽  
Vol 103 (12) ◽  
Author(s):  
Can-Min Deng
2018 ◽  
Vol 98 (12) ◽  
Author(s):  
Can-Min Deng ◽  
Yifu Cai ◽  
Xue-Feng Wu ◽  
En-Wei Liang

Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 372-378
Author(s):  
Viktor D. Stasenko ◽  
Alexander A. Kirillov

In this paper, the merger rate of black holes in a cluster of primordial black holes (PBHs) is investigated. The clusters have characteristics close to those of typical globular star clusters. A cluster that has a wide mass spectrum ranging from 10−2 to 10M⊙ (Solar mass) and contains a massive central black hole of the mass M•=103M⊙ is considered. It is shown that in the process of the evolution of cluster, the merger rate changed significantly, and by now, the PBH clusters have passed the stage of active merging of the black holes inside them.


2021 ◽  
Vol 503 (2) ◽  
pp. 3081-3088
Author(s):  
V K Dubrovich ◽  
Yu N Eroshenko ◽  
S I Grachev

ABSTRACT We consider a primordial black hole of very high mass, $10^9\!-\!10^{10}\, \mathrm{M}_\odot$, surrounded by the dark matter and bayonic halo at redshifts z ∼ 20 without any local sources of energy release. Such heavy and concentrated objects in the early Universe were previously called ‘cosmological dinosaurs’. Spectral distribution and spatial variation of the brightness in the 21-cm line of atomic hydrogen are calculated with the theory of radiation transfer. It is shown that a narrow and deep absorption arises in the form of the spherical shell around the primordial black hole at the certain radius. The parameters of this shell depend almost exclusively on the mass of the black hole. The angular diameter 18 arcsec of the absorption ring at z ∼ 20 is well within the current technical possibilities of the Square Kilometre Array type telescopes. But the observation of the ring width itself requires an order of magnitude better resolution.


2021 ◽  
Author(s):  
Rui feng Zheng ◽  
Jia ming Shi ◽  
Taotao Qiu

Abstract It is well known that primordial black hole (PBH) can be generated in inflation process of the early universe, especially when the inflaton field has some non-trivial features that could break the slow-roll condition. In this paper, we investigate a toy model of inflation with bumpy potential, which has one or several bumps. We found that potential with multi-bump can give rise to power spectra with multi peaks in small-scale region, which can in turn predict the generation of primordial black holes in various mass ranges. We also consider the two possibilities of PBH formation by spherical collapse and elliptical collapse. And discusses the scalar-induced gravitational waves (SIGWs) generated by the second-order scalar perturbations.


Sign in / Sign up

Export Citation Format

Share Document