scholarly journals Observational manifestations of ‘cosmological dinosaurs’ at redshifts z ∼ 20

2021 ◽  
Vol 503 (2) ◽  
pp. 3081-3088
Author(s):  
V K Dubrovich ◽  
Yu N Eroshenko ◽  
S I Grachev

ABSTRACT We consider a primordial black hole of very high mass, $10^9\!-\!10^{10}\, \mathrm{M}_\odot$, surrounded by the dark matter and bayonic halo at redshifts z ∼ 20 without any local sources of energy release. Such heavy and concentrated objects in the early Universe were previously called ‘cosmological dinosaurs’. Spectral distribution and spatial variation of the brightness in the 21-cm line of atomic hydrogen are calculated with the theory of radiation transfer. It is shown that a narrow and deep absorption arises in the form of the spherical shell around the primordial black hole at the certain radius. The parameters of this shell depend almost exclusively on the mass of the black hole. The angular diameter 18 arcsec of the absorption ring at z ∼ 20 is well within the current technical possibilities of the Square Kilometre Array type telescopes. But the observation of the ring width itself requires an order of magnitude better resolution.

2019 ◽  
Vol 29 (02) ◽  
pp. 2030002 ◽  
Author(s):  
Sam Young

In this paper, the criterion used to determine whether a density perturbation will collapse to form a primordial black hole (PBH) is re-examined in respect of its use to determine the abundance of PBHs. There is particular focus on which parameter to use, the time at which the abundance should be calculated, and the use of different smoothing functions. It is concluded that, with the tools currently available, the smoothed density contrast should be used rather than the peak value, and should be calculated from the time-independent component of the density contrast in the super-horizon limit (long before perturbations enter the horizon) rather than at horizon crossing. For the first time, the effect of the choice of smoothing function upon the formation criterion is calculated, and, for a given abundance of PBHs, it is found that the uncertainty in the amplitude of the power spectrum due to this is [Formula: see text], an order of magnitude smaller than that suggested by previous calculations. The relation between the formation criterion stated in terms of the density contrast and the curvature perturbation [Formula: see text] is also discussed.


1989 ◽  
Vol 136 ◽  
pp. 555-566 ◽  
Author(s):  
Leonid M. Ozernoy

Considerations are presented which could serve as nourishment for a “devil's advocate” with regard to the concept of a very massive (~ 106M⊙) black hole at the center of the Galaxy. Constraints on the BH mass given by various processes are summarized. Most attention is paid to a novel probe of the black hole by means of a “wind diagnostic,” i.e. by accounting for interaction of the BH with the wind responsible for the broad line region at the Galactic Center. All available data taken together do not require a very high mass for the BH, but a moderately massive black hole currently seems to present the prime candidacy from several alternatives.


2019 ◽  
Vol 488 (3) ◽  
pp. 3268-3273 ◽  
Author(s):  
Bhaskar Agarwal ◽  
Fergus Cullen ◽  
Sadegh Khochfar ◽  
Daniel Ceverino ◽  
Ralf S Klessen

ABSTRACT Massive 104–5 M⊙ black hole seeds resulting from the direct collapse of pristine gas require a metal-free atomic cooling halo with extremely low H2 fraction, allowing the gas to cool isothermally in the presence of atomic hydrogen. In order to achieve this chemo-thermodynamical state, the gas needs to be irradiated by both Lyman–Werner (LW) photons in the energy range of 11.2–13.6 eV capable of photodissociating H2 and 0.76 eV photons capable of photodetaching H−. Employing cosmological simulations capable of creating the first galaxies in high resolution, we explore if there exists a subset of galaxies that favour direct collapse black hole (DCBH) formation in their vicinity. We find a fundamental relation between the maximum distance at which a galaxy can cause DCBH formation and its star formation rate (SFR), which automatically folds in the chemo-thermodynamical effects of both H2 photodissociation and H− photodetachment. This is in contrast to the approximately three order of magnitude scatter seen in the LW flux parameter computed at the maximum distance, which is synonymous with a scatter in ‘Jcrit’. Thus, computing the rates and/or the LW flux from a galaxy is no longer necessary to identify neighbouring sites of DCBH formation, as our relation allows one to distinguish regions where DCBH formation could be triggered in the vicinity of a galaxy of a given SFR.


Nature ◽  
2014 ◽  
Author(s):  
Eugenie Samuel Reich

2021 ◽  
Vol 503 (3) ◽  
pp. 3629-3642
Author(s):  
Colin DeGraf ◽  
Debora Sijacki ◽  
Tiziana Di Matteo ◽  
Kelly Holley-Bockelmann ◽  
Greg Snyder ◽  
...  

ABSTRACT With projects such as Laser Interferometer Space Antenna (LISA) and Pulsar Timing Arrays (PTAs) expected to detect gravitational waves from supermassive black hole mergers in the near future, it is key that we understand what we expect those detections to be, and maximize what we can learn from them. To address this, we study the mergers of supermassive black holes in the Illustris simulation, the overall rate of mergers, and the correlation between merging black holes and their host galaxies. We find these mergers occur in typical galaxies along the MBH−M* relation, and that between LISA and PTAs we expect to probe the full range of galaxy masses. As galaxy mergers can trigger star formation, we find that galaxies hosting low-mass black hole mergers tend to show a slight increase in star formation rates compared to a mass-matched sample. However, high-mass merger hosts have typical star formation rates, due to a combination of low gas fractions and powerful active galactic nucleus feedback. Although minor black hole mergers do not correlate with disturbed morphologies, major mergers (especially at high-masses) tend to show morphological evidence of recent galaxy mergers which survive for ∼500 Myr. This is on the same scale as the infall/hardening time of merging black holes, suggesting that electromagnetic follow-ups to gravitational wave signals may not be able to observe this correlation. We further find that incorporating a realistic time-scale delay for the black hole mergers could shift the merger distribution towards higher masses, decreasing the rate of LISA detections while increasing the rate of PTA detections.


Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 372-378
Author(s):  
Viktor D. Stasenko ◽  
Alexander A. Kirillov

In this paper, the merger rate of black holes in a cluster of primordial black holes (PBHs) is investigated. The clusters have characteristics close to those of typical globular star clusters. A cluster that has a wide mass spectrum ranging from 10−2 to 10M⊙ (Solar mass) and contains a massive central black hole of the mass M•=103M⊙ is considered. It is shown that in the process of the evolution of cluster, the merger rate changed significantly, and by now, the PBH clusters have passed the stage of active merging of the black holes inside them.


Sign in / Sign up

Export Citation Format

Share Document