scholarly journals Indirect detection of gravitons through quantum entanglement

2021 ◽  
Vol 104 (8) ◽  
Author(s):  
Sugumi Kanno ◽  
Jiro Soda ◽  
Junsei Tokuda
2018 ◽  
Author(s):  
Yong Cao ◽  
Mark T. McDermott

<div> <div> <div> <p>Quantitative measurement of small-molecule metabolites is now emerging as an effective way to link the metabolite profile to disease state. Surface plasmon resonance (SPR) is a sensing platform that has demonstrated applicability for a large range of biomolecules. However, direct detection of small molecules with SPR challenges the refractive index based detection mechanism. Herein, we utilized an indirect detection format and developed an inhibition immunoassay for the quantitative measurement of 17β-estradiol (E2) using SPR. One competitor, BSA-E2 conjugate, was immobilized to the SPR chip via the reaction between the primary amino group of the conjugate and the succinimide group (NHS) introduced by the formation of a thiol-NHS monolayer on gold surface. Free E2 molecules compete with BSA-E2 on chip surface for binding sites provided by a monoclonal anti-E2 antibody. It was found the binding affinity of the antibody to BSA-E2 conjugate increases with decreasing surface coverage of BSA-E2 conjugate. Under optimal conditions, a sigmoidal calibration curve with a negative slope and a dynamic range from 10 pM to 2 nM was generated. The detection limit of the immunoassay is estimated to be 0.3 pM. Moreover, the immunoassay exhibits high specificity for E2 detection using estrone (E1) as a potential interference.</p></div></div></div>


2014 ◽  
Author(s):  
Sankar Das Sarma ◽  
Michael Freedman ◽  
Victor Galitski ◽  
Chetan Nayak ◽  
Kirill Shtengel

Author(s):  
Richard Healey

Quantum entanglement is popularly believed to give rise to spooky action at a distance of a kind that Einstein decisively rejected. Indeed, important recent experiments on systems assigned entangled states have been claimed to refute Einstein by exhibiting such spooky action. After reviewing two considerations in favor of this view I argue that quantum theory can be used to explain puzzling correlations correctly predicted by assignment of entangled quantum states with no such instantaneous action at a distance. We owe both considerations in favor of the view to arguments of John Bell. I present simplified forms of these arguments as well as a game that provides insight into the situation. The argument I give in response turns on a prescriptive view of quantum states that differs both from Dirac’s (as stated in Chapter 2) and Einstein’s.


2021 ◽  
Vol 219 ◽  
pp. 106859
Author(s):  
Rujuta Vaze ◽  
Nagraj Deshmukh ◽  
Rajesh Kumar ◽  
Akash Saxena

2021 ◽  
Vol 118 (14) ◽  
pp. 140501
Author(s):  
Stuart S. Szigeti ◽  
Onur Hosten ◽  
Simon A. Haine

2021 ◽  
Vol 3 (1) ◽  
pp. 53-67
Author(s):  
Ghenadie Mardari

The phenomenon of quantum erasure exposed a remarkable ambiguity in the interpretation of quantum entanglement. On the one hand, the data is compatible with the possibility of arrow-of-time violations. On the other hand, it is also possible that temporal non-locality is an artifact of post-selection. Twenty years later, this problem can be solved with a quantum monogamy experiment, in which four entangled quanta are measured in a delayed-choice arrangement. If Bell violations can be recovered from a “monogamous” quantum system, then the arrow of time is obeyed at the quantum level.


Sign in / Sign up

Export Citation Format

Share Document