Static plane-symmetric scalar fields with a traceless energy-momentum tensor in general relativity

1983 ◽  
Vol 27 (8) ◽  
pp. 1728-1730 ◽  
Author(s):  
A. N. Vaidya ◽  
M. M. Som
2018 ◽  
Vol 15 (05) ◽  
pp. 1850075
Author(s):  
Tahir Hussain ◽  
Sumaira Saleem Akhtar

In this paper, we investigate homothetic Ricci collineations (HRCs) for non-static plane symmetric spacetimes. The source of the energy–momentum tensor is assumed to be a perfect fluid. Both degenerate as well as non-degenerate cases are considered and the HRC equations are solved in different cases. It is concluded that these spacetimes may possess 6, 7, 8, 10 or 11 HRCs in non-degenerate case, while they admit seven or infinite number of HRCs for degenerate Ricci tensor.


2019 ◽  
Vol 28 (07) ◽  
pp. 1950090 ◽  
Author(s):  
D. Alvear Terrero ◽  
P. Bargueño ◽  
E. Contreras ◽  
A. Pérez Martínez ◽  
G. Quintero Angulo

In this work, we have constructed exact geometries which describe magnetized matter within General Relativity, specifically in an almost-plane-symmetric case. Although the use of this geometry imposes some constraints on the components of the energy–momentum tensor, it allows to describe some physically interesting situations in which the magnetized vacuum is relevant.


2019 ◽  
Vol 16 (12) ◽  
pp. 1950182
Author(s):  
Tahir Hussain ◽  
Khudija Shaheen ◽  
Faiza Saleem

In this paper, we present a complete classification of static plane symmetric spacetimes via their homothetic symmetries of the energy–momentum tensor, known as homothetic matter collineations (HMCs). The HMC equations for these spacetimes are derived and then solved by considering the degeneracy and non-degeneracy of the energy–momentum tensor. In the former case, we have obtained 6, 11 and infinite number of HMCs, while in the latter case, the solution of HMC equations yields 6-, 7-, 8-, 10- and 11-dimensional algebra of HMCs. The obtained HMCs generate some differential constraints involving the components of the energy–momentum tensor. Some examples of static plane symmetric spacetime metrics satisfying these constraints are provided and the physical interpretations of these metrics are discussed.


2019 ◽  
Vol 28 (01n02) ◽  
pp. 1950007 ◽  
Author(s):  
J. Struckmeier ◽  
J. Muench ◽  
P. Liebrich ◽  
M. Hanauske ◽  
J. Kirsch ◽  
...  

The generic form of space-time dynamics as a classical gauge field theory has recently been derived, based on only the action principle and on the principle of general relativity. It was thus shown that Einstein’s general relativity is the special case where (i) the Hilbert Lagrangian (essentially the Ricci scalar) is supposed to describe the dynamics of the “free” (uncoupled) gravitational field, and (ii) the energy–momentum tensor is that of scalar fields representing real or complex structureless (spin-[Formula: see text]) particles. It followed that all other source fields — such as vector fields representing massive and nonmassive spin-[Formula: see text] particles — need careful scrutiny of the appropriate source tensor. This is the subject of our actual paper: we discuss in detail the coupling of the gravitational field with (i) a massive complex scalar field, (ii) a massive real vector field, and (iii) a massless vector field. We show that different couplings emerge for massive and nonmassive vector fields. The massive vector field has the canonical energy–momentum tensor as the appropriate source term — which embraces also the energy density furnished by the internal spin. In this case, the vector fields are shown to generate a torsion of space-time. In contrast, the system of a massless and charged vector field is associated with the metric (Hilbert) energy–momentum tensor due to its additional [Formula: see text] symmetry. Moreover, such vector fields do not generate a torsion of space-time. The respective sources of gravitation apply for all models of the dynamics of the “free” (uncoupled) gravitational field — which do not follow from the gauge formalism but must be specified based on separate physical reasoning.


1977 ◽  
Vol 30 (1) ◽  
pp. 109 ◽  
Author(s):  
DRK Reddy

Plane symmetric solutions of a scalar-tensor theory proposed by Dunn have been obtained. These solutions are observed to be similar to the plane symmetric solutions of the field equations corresponding to zero mass scalar fields obtained by Patel. It is found that the empty space-times of general relativity discussed by Taub and by Bera are obtained as special cases.


2018 ◽  
Vol 27 (03) ◽  
pp. 1850032 ◽  
Author(s):  
Ernesto Contreras ◽  
Ángel Rincón ◽  
Benjamin Koch ◽  
Pedro Bargueño

In this work, we present a regular black hole solution, in the context of scale-dependent General Relativity, satisfying the weak energy condition. The source of this solution is an anisotropic effective energy–momentum tensor which appears when the scale dependence of the theory is turned-on. In this sense, the solution can be considered as a semiclassical extension of the Schwarzschild one.


1999 ◽  
Vol 59 (6) ◽  
Author(s):  
Fernando C. Lombardo ◽  
Francisco D. Mazzitelli ◽  
Jorge G. Russo

Sign in / Sign up

Export Citation Format

Share Document