black hole solution
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 74)

H-INDEX

23
(FIVE YEARS 4)

2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Leila Shahkarami

AbstractWe employ an analytic solution of a magnetized Einstein–Maxwell-dilaton gravity model whose parameters have been determined so that its holographic dual has the most similarity to the confining QCD-like theories. Analyzing the total potential of a quark–antiquark pair, we are able to investigate the effect of an electric field on different phases of the background which are the thermal AdS and black hole phases. This is helpful for better understanding of the confining character and the phases of the system. We find out that the field theory dual to the black hole solution is always deconfined, as expected. However, although the thermal AdS phase generally describes the confining phase, for quark pairs parallel to B (longitudinal case) with $$B>B_{\mathrm {critical}}$$ B > B critical the response of the system mimics the deconfinement, since there is no IR wall in the bulk and the critical field $$E_s=0$$ E s = 0 , as is the case for the deconfined phase. We moreover observe that in the black hole phase with sufficiently small values of $$\mu $$ μ and in the thermal AdS phase, for both longitudinal and transverse cases, the magnetic field enhances the Schwinger effect, which can be termed as the inverse magnetic catalysis (IMC). This is deduced both from the decrease of critical electric fields and decreasing the height and width of the total potential barrier the quarks are facing with. However, by increasing $$\mu $$ μ to higher values, IMC turns into magnetic catalysis, as also observed from the diagram of the Hawking–Page phase transition temperature versus B for the background geometry.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Seyed Hossein Hendi ◽  
Somayeh Hajkhalili ◽  
Mubasher Jamil ◽  
Mehrab Momennia

AbstractIn this paper, we investigate the thermodynamics and phase transitions of a four-dimensional rotating Kaluza–Klein black hole solution in the presence of Maxwell electrodynamics. Calculating the conserved and thermodynamic quantities shows that the first law of thermodynamics is satisfied. To find the stable black hole’s criteria, we check the stability in the canonical ensemble by analyzing the behavior of the heat capacity. We also consider a massive scalar perturbation minimally coupled to the background geometry of the four-dimensional static Kaluza–Klein black hole and investigate the quasinormal modes by employing the Wentzel–Kramers–Brillouin (WKB) approximation. The anomalous decay rate of the quasinormal modes spectrum is investigated by using the sixth-order WKB formula and quasi-resonance modes of the black hole are studied with averaging of Padé approximations as well.


2021 ◽  
Author(s):  
Tongzheng Wang ◽  
Wei-Liang Qian ◽  
Juan Fernando Zapata Zapata ◽  
Kai Lin

Abstract This work explores the scalar and Dirac quasinormal modes pertaining to a class of black hole solutions in the scalar-tensor-Gauss-Bonnet theory. The black hole metrics in question are novel analytic solutions recently derived in the extended version of the latter theory, which effectively follows at the level of the action of string theory. Owing to the existence of a nonlinear electromagnetic field, the black hole solution possesses a nonvanishing magnetic charge. In particular, the metric is capable of describing black holes with distinct characteristics by assuming different values of the ADM mass and the magnetic charge. The present study is devoted to investigating the scalar and Dirac perturbations in the above black hole spacetimes, and in particular, based on distinct horizon structures, we focus on two different types of solutions. The properties of the complex frequencies of the obtained dissipative oscillations are investigated, and subsequently, the stability of the metric is addressed. We elaborate on the possible implications of the present study.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
M. R. Setare ◽  
M. Koohgard

AbstractWe study some aspects of a class of non-AdS holography where the 3D bulk gravity is given by generalized minimal massive gravity (GMMG). We consider the spacelike warped $$AdS_3$$ A d S 3 ($$WAdS_3$$ W A d S 3 ) black hole solution of this model where the 2d dual boundary theory is the warped conformal field theory (WFCT). The charge algebra of the isometries in the bulk and the charge algebra of the vacuum symmetries at the boundary are compatible and this is an evidence for the duality conjecture. Further evidence for this duality is the equality of entanglement entropy and modular Hamiltonian on both sides of the duality. So we consider the modular Hamiltonian for the single interval at the boundary in associated to the modular flow generators of the vacuum. We calculate the gravitational charge in associated to the asymptotic Killing vectors that preserve the metric boundary conditions. Assuming the first law of the entanglement entropy to be true, we introduce the matching conditions between the variables in two side of the duality and we find equality of the modular Hamiltonian variations and the gravitational charge variations in two sides of the duality. According to the results of the present paper we can say with more sure that the dual theory of the warped AdS3 black hole solution of GMMG is a Warped CFT.


Author(s):  
R P Singh ◽  
B K Singh ◽  
B R K Gupta ◽  
S Sachan

The Bardeen black hole solution is the first spherically symmetric regular black hole based on the Sakharov and Gliner proposal which is the modification of the Schwarzschild black hole. We present the Bardeen black hole solution in presence of the dRGT massive gravity, which is regular everywhere in the presence of a nonlinear source. The obtained solution interpolates with the Bardeen black hole in the absence of massive gravity parameter and the Schwarzschild black hole in the limit of magnetic charge g=0. We investigate the thermodynamical quantities viz. mass (M), temperature (T), entropy (S) and free energy (F) in terms of horizon radius for both canonical and grand canonical ensembles. We check the local and global stability of the obtained solution by studying the heat capacity and free energy. The heat capacity flips the sign at r = r<sub>c</sub>. The black hole is thermodynamically stable with positive heat capacity C>0 for i.e., globally preferred with negative free energy F < 0. In addition, we also study the phase structure of the obtained solution in both ensembles.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
F. Naderi ◽  
A. Rezaei-Aghdam ◽  
Z. Mahvelati-Shamsabadi

AbstractIn this paper, we present two new families of spatially homogeneous black hole solution for $$z=4$$ z = 4 Hořava–Lifshitz Gravity equations in $$(4+1)$$ ( 4 + 1 ) dimensions with general coupling constant $$\lambda $$ λ and the especial case $$\lambda =1$$ λ = 1 , considering $$\beta =-1/3$$ β = - 1 / 3 . The three-dimensional horizons are considered to have Bianchi types II and III symmetries, and hence the horizons are modeled on two types of Thurston 3-geometries, namely the Nil geometry and $$H^2\times R$$ H 2 × R . Being foliated by compact 3-manifolds, the horizons are neither spherical, hyperbolic, nor toroidal, and therefore are not of the previously studied topological black hole solutions in Hořava–Lifshitz gravity. Using the Hamiltonian formalism, we establish the conventional thermodynamics of the solutions defining the mass and entropy of the black hole solutions for several classes of solutions. It turned out that for both horizon geometries the area term in the entropy receives two non-logarithmic negative corrections proportional to Hořava–Lifshitz parameters. Also, we show that choosing some proper set of parameters the solutions can exhibit locally stable or unstable behavior.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Thanasis Karakasis ◽  
Eleftherios Papantonopoulos ◽  
Zi-Yu Tang ◽  
Bin Wang

AbstractWe report exact black hole solutions in asymptotically flat or (A)dS four-dimensional spacetime with a conformally coupled self-interacting scalar field in f(R) gravity. We first consider the asymptotically flat model $$f(R) = R -2\alpha \sqrt{R}$$ f ( R ) = R - 2 α R and derive an exact black hole solution. Then, we consider the asymptotically (A)dS model $$f(R) =R -2 \Lambda -2 \alpha \sqrt{R-4 \Lambda }$$ f ( R ) = R - 2 Λ - 2 α R - 4 Λ and derive an exact black hole solution. In both cases the modified gravity parameter $$\alpha $$ α , which has the dimension of the inverse mass, cannot be set to zero and the self-interacting potential is determined from the Klein–Gordon equation, preserving the conformal invariance. The thermodynamics of the solutions is also studied.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Alfredo Herrera-Aguilar ◽  
Jhony A. Herrera-Mendoza ◽  
Daniel F. Higuita-Borja

AbstractWe present a spinning black hole solution in d dimensions with a maximal number of rotation parameters in the context of the Einstein–Maxwell-Dilaton theory. An interesting feature of such a solution is that it accommodates Lifshitz black holes when the rotation parameters are set to zero. We verify the rotating nature of the black hole solution by performing the quasi-local analysis of conserved charges and defining the corresponding angular momenta. In addition, we perform the thermodynamical analysis of the black hole configuration, show that the first law of thermodynamics is completely consistent, and obtain a Smarr-like formula. We further study the thermodynamic stability of the constructed solution from a local viewpoint, by computing the associated specific heats, and from a global perspective, by using the so-called new thermodynamic geometry. We finally make some comments related to a pathology found in the causal structure of the obtained rotating black hole spacetime and compute some of its curvature invariants.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Hemant Rathi ◽  
Dibakar Roychowdhury

Abstract We construct the most general theory of 2D Einstein-dilaton gravity coupled with U(1) gauge fields that contains all the 2-derivative and the 4-derivative interactions allowed by the diffeomorphism invariance. We renormalise the 2D action and obtain the vacuum solution as well as the black hole solution. The vacuum solution in the UV is dominated by Lifshitz2 with dynamical exponent (z = $$ \frac{7}{3} $$ 7 3 ) while on the other hand, the spacetime curvature diverges as we move towards the deep IR limit. We calculate the holographic stress tensor and the central charge for the boundary theory. Our analysis shows that the central charge goes as the inverse power of the coupling associated to 4-derivative interactions. We also compute the Wald entropy for 2D black holes and interpret its near horizon divergence in terms of the density of states. We compare the Wald entropy with the Cardy formula and obtain the eigen value of Virasoro operator (L0) for our model. Finally, we explore the near horizon structure of 2D black holes and calculate the central charge corresponding to the CFT near horizon. We further show that the near horizon CFT may be recast as a 2D Liouville theory with higher derivative corrections. We study the Weyl invariance of this generalised Liouville theory and identify the Weyl anomaly associated to it. We also comment on the classical vacuum structure of the theory.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1622
Author(s):  
Irina Radinschi ◽  
Theophanes Grammenos ◽  
Gargee Chakraborty ◽  
Surajit Chattopadhyay ◽  
Marius Mihai Cazacu

Energy-momentum localization for the four-dimensional static and spherically symmetric, regular Simpson–Visser black hole solution is studied by use of the Einstein and Møller energy-momentum complexes. According to the particular values of the parameter of the metric, the static Simpson–Visser solution can possibly describe the Schwarzschild black hole solution, a regular black hole solution with a one-way spacelike throat, a one-way wormhole solution with an extremal null throat, or a traversable wormhole solution of the Morris–Thorne type. In both prescriptions it is found that all the momenta vanish, and the energy distribution depends on the mass m, the radial coordinate r, and the parameter a of the Simpson–Visser metric. Several limiting cases of the results obtained are discussed, while the possibility of astrophysically relevant applications to gravitational lensing issues is pointed out.


Sign in / Sign up

Export Citation Format

Share Document