Quantized relativistic rotator

1984 ◽  
Vol 30 (12) ◽  
pp. 2683-2689 ◽  
Author(s):  
Herbert C. Corben
Keyword(s):  

1983 ◽  
Vol 28 (12) ◽  
pp. 3032-3040 ◽  
Author(s):  
A. Bohm ◽  
M. Loewe ◽  
L. C. Biedenharn ◽  
H. van Dam


Author(s):  
A. Bohm ◽  
M. Loewe ◽  
L. C. Biedenharn ◽  
H. van Dam


1975 ◽  
Vol 18 (9) ◽  
pp. 1315-1318 ◽  
Author(s):  
A. V. Borisov ◽  
A. A. Matyukhin
Keyword(s):  




2019 ◽  
Vol 33 (22) ◽  
pp. 1950253
Author(s):  
N. V. Gleizer ◽  
A. M. Ermolaev ◽  
G. I. Rashba

On the basis of the one-particle Dirac equation, an exact solution for the problem of the energy spectrum of a relativistic electron on the surface of a tube in a magnetic field is obtained. The spectra of a relativistic rotator and a relativistic electron in a two-dimensional electron gas are obtained in limiting cases. The density of electron states and the main thermodynamic functions of a relativistic electron gas on a tube in a magnetic field are calculated. These values experience Aharonov–Bohm oscillations and oscillations of the de Haas–van Alphen type with a change of the magnetic field and parameters of the problem. The asymptotics of thermodynamic functions at low- and high-temperatures are obtained. The results can be used in studies of nanotubes of a two-dimensional electron gas and in astrophysics.



1969 ◽  
Vol 185 (5) ◽  
pp. 1670-1675 ◽  
Author(s):  
Kenneth Rafanelli


1984 ◽  
Vol 30 (2) ◽  
pp. 409-420 ◽  
Author(s):  
L. C. Biedenharn ◽  
A. Bohm ◽  
M. Tarlini ◽  
H. van Dam ◽  
N. Mukunda
Keyword(s):  


1984 ◽  
Vol 29 (12) ◽  
pp. 2828-2837 ◽  
Author(s):  
R. R. Aldinger ◽  
A. Bohm ◽  
P. Kielanowski ◽  
M. Loewe ◽  
P. Moylan


1989 ◽  
Vol 39 (11) ◽  
pp. 1239-1244 ◽  
Author(s):  
J. Weiss
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document