Vacuum polarization of the electromagnetic field near a rotating black hole

1985 ◽  
Vol 32 (12) ◽  
pp. 3150-3163 ◽  
Author(s):  
V. P. Frolov ◽  
A. I. Zel’nikov
2015 ◽  
Vol 24 (09) ◽  
pp. 1542007 ◽  
Author(s):  
Hugo R. C. Ferreira

Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle–Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2 + 1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization, for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Daniela D. Doneva ◽  
Stoytcho S. Yazadjiev

Sign in / Sign up

Export Citation Format

Share Document