scholarly journals Electroweak symmetry-breaking Higgs boson in models with top-quark condensation

1997 ◽  
Vol 56 (3) ◽  
pp. 1504-1510 ◽  
Author(s):  
James D. Wells
2010 ◽  
Vol 25 (06) ◽  
pp. 423-429 ◽  
Author(s):  
ALFONSO R. ZERWEKH

In this paper, we propose an effective model scheme that describes the electroweak symmetry breaking sector by means of composite Higgs-like scalars, following the ideas of Minimal Walking Technicolor (MWT). We argue that, because of the general failure of Extended Technicolor (ETC) to explain the mass of the top quark, it is necessary to introduce two composite Higgs bosons: one of them originated by a MWT–ETC sector and the other produced by a Topcolor sector. We focus on the phenomenological differences between the light composite Higgs present in our model and the fundamental Higgs boson predicted by the Standard Model and their production at the LHC. We show that in this scheme the main production channel of the lighter Higgs boson is the associated production with a gauge boson and WW fusion but not the gluon–gluon fusion channel which is substantially suppressed.


2014 ◽  
Vol 29 (31) ◽  
pp. 1450166
Author(s):  
Amir H. Fariborz ◽  
Renata Jora ◽  
Joseph Schechter

We work out simple tree level relations in a top condensate model with dynamical electroweak symmetry breaking. We find that in this picture the mass of the composite Higgs boson at tree level is given by [Formula: see text] where mt is the mass of the top quark.


1996 ◽  
Vol 54 (9) ◽  
pp. 5855-5865 ◽  
Author(s):  
Marco A. Díaz ◽  
Tonnis A. ter Veldhuis ◽  
Thomas J. Weiler

2009 ◽  
Vol 24 (21) ◽  
pp. 1631-1648 ◽  
Author(s):  
RADOVAN DERMÍŠEK

This review provides an elementary discussion of electroweak symmetry breaking in the minimal and the next-to-minimal supersymmetric models with the focus on the fine-tuning problem — the tension between natural electroweak symmetry breaking and the direct search limit on the Higgs boson mass. Two generic solutions of the fine-tuning problem are discussed in detail: models with unusual Higgs decays; and models with unusual pattern of soft supersymmetry breaking parameters.


1992 ◽  
Vol 07 (12) ◽  
pp. 2679-2693 ◽  
Author(s):  
HIDEKAZU TANAKA ◽  
ISAMU WATANABE

Production cross-sections of color-sextet quarks at hadron colliders are estimated in various energies and the results are compared with cross-sections of the conventional top quark productions. Particular attentions are paid for a model recently proposed in Ref. 2 in order to explain the dynamical mechanism of the electroweak symmetry breaking. The model may be tested at SSC and LHC if the sextet quarks dominantly decay semileptonically through effective fourfermion interactions, or if the sextet quarks have long enough lifetime to reach the detectors.


2010 ◽  
Vol 25 (09) ◽  
pp. 691-701
Author(s):  
TATSURU KIKUCHI

Recently, conceptually new physics beyond the Standard Model has been proposed by Georgi, where a new physics sector becomes conformal and provides "unparticle" which couples to the Standard Model sector through higher dimensional operators in low energy effective theory. Among several possibilities, we focus on operators involving the unparticle and Higgs boson. Once the Higgs develops the vacuum expectation value (VEV), the conformal symmetry is broken and as a result, the mixing between the unparticle and the Higgs boson emerges. In the former part of this paper, we consider a natural realization of bosonic seesaw in the context of unparticle physics. In this framework, the negative mass squared or the electroweak symmetry breaking vacuum is achieved as a result of mass matrix diagonalization. So, the bosonic seesaw mechanism for the electroweak symmetry breaking can naturally be understood in the framework of unparticle physics. In the latter part of this paper, we consider the unparticle as a hidden sector of supersymmetry breaking, and give some phenomenological consequences of this scenario. The result shows that there is a possibility for the unparticle as a hidden sector in SUSY breaking sector, and can provide a solution to the μ problem in SUSY models.


2003 ◽  
Vol 663 (1-2) ◽  
pp. 141-162 ◽  
Author(s):  
Riccardo Barbieri ◽  
Lawrence J. Hall ◽  
Guido Marandella ◽  
Yasunori Nomura ◽  
Takemichi Okui ◽  
...  

2013 ◽  
Vol 28 (02) ◽  
pp. 1330004 ◽  
Author(s):  
ALEKSANDR AZATOV ◽  
JAMISON GALLOWAY

In this review, we discuss methods of parsing direct information from collider experiments regarding the Higgs boson and describe simple ways in which experimental likelihoods can be consistently reconstructed and interfaced with model predictions in pertinent parameter spaces. We review prevalent scenarios for extending the electroweak symmetry breaking sector and emphasize their predictions for nonstandard Higgs phenomenology that could be observed in large hadron collider (LHC) data if naturalness is realized in particular ways. Specifically we identify how measurements of Higgs couplings can be used to imply the existence of new physics at particular scales within various contexts. The most dominant production and decay modes of the Higgs-like state observed in the early data sets have proven to be consistent with predictions of the Higgs boson of the Standard Model, though interesting directions in subdominant channels still exist and will require our careful attention in further experimental tests. Slightly anomalous rates in certain channels at the early LHC have spurred effort in model building and spectra analyses of particular theories, and we discuss these developments in some detail. Finally, we highlight some parameter spaces of interest in order to give examples of how the data surrounding the new state can most effectively be used to constrain specific models of weak scale physics.


2006 ◽  
Vol 21 (08n09) ◽  
pp. 1591-1603
Author(s):  
AURELIO JUSTE

Ten years after its discovery at the Tevatron collider, we still know little about the top quark. Its large mass suggests it may play a key role in the mechanism of Electroweak Symmetry Breaking (EWSB), or open a window of sensitivity to new physics related to EWSB and preferentially coupled to it. To determine whether this is the case, precision measurements of top quark properties are necessary. The high statistics samples being collected by the Tevatron experiments during Run II start to incisively probe the top quark sector. This report summarizes the experimental status of the top quark, focusing in particular on the recent measurements from the Tevatron Run II.


Sign in / Sign up

Export Citation Format

Share Document