scholarly journals Gravitational collapse and the cosmological constant

2001 ◽  
Vol 63 (12) ◽  
Author(s):  
S. S. Deshingkar ◽  
S. Jhingan ◽  
A. Chamorro ◽  
P. S. Joshi
Physics ◽  
2019 ◽  
Vol 1 (3) ◽  
pp. 321-338 ◽  
Author(s):  
Frans R. Klinkhamer ◽  
Osvaldo P. Santillán ◽  
Grigory E. Volovik ◽  
Albert Zhou

We consider a finite-size spherical bubble with a nonequilibrium value of the q-field, where the bubble is immersed in an infinite vacuum with the constant equilibrium value q 0 for the q-field (this q 0 has already cancelled an initial cosmological constant). Numerical results are presented for the time evolution of such a q-bubble with gravity turned off and with gravity turned on. For small enough bubbles and a q-field energy scale sufficiently below the gravitational energy scale E Planck , the vacuum energy of the q-bubble is found to disperse completely. For large enough bubbles and a finite value of E Planck , the vacuum energy of the q-bubble disperses only partially and there occurs gravitational collapse near the bubble center.


2005 ◽  
Vol 14 (03n04) ◽  
pp. 707-715 ◽  
Author(s):  
S. G. GHOSH

We investigate the occurrence of naked singularities in the gravitational collapse of an inhomogeneous dust cloud in an expanding de Sitter background — a piece of Tolman–Bondi–de Sitter space–time. It turns out that the collapse proceed in the same way as in the Minkowski background, i.e., the strong curvature naked singularities form and thus violate the cosmic censorship conjecture. Our result unambiguously support the fact that the asymptotic flatness of space–time is not a necessary ingredient for the development of naked singularities.


2011 ◽  
Vol 26 (28) ◽  
pp. 2135-2147 ◽  
Author(s):  
KANG ZHOU ◽  
ZHAN-YING YANG ◽  
DE-CHENG ZOU ◽  
RUI-HONG YUE

We explore the gravitational collapse of a spherically symmetric dust cloud in the Einstein–Gauss–Bonnet gravity without a cosmological constant, and obtain three families of LTB-like solutions. It is shown that the Gauss–Bonnet term has a profound influence on the nature of singularities, and the global structure of spacetime changes drastically from the analogous general relativistic case. Interestingly, the formation of a naked, massive and uncentral singularity, allowed in five-dimensional spacetime, is forbidden if D≥6. Moreover, such singularity is gravitational strong and a serious counterexample to CCH.


2006 ◽  
Vol 15 (04) ◽  
pp. 545-557 ◽  
Author(s):  
R. CHAN ◽  
M. F. A. DA SILVA ◽  
JAIME F. VILLAS DA ROCHA

The (2+1)-dimensional geodesic circularly symmetric solutions of Einstein-massless-scalar field equations with negative cosmological constant are found and their local and global properties are studied. It is found that one of them represents gravitational collapse where black holes are always formed.


1991 ◽  
Vol 23 (4) ◽  
pp. 471-475 ◽  
Author(s):  
David Garfinkle ◽  
Chris Vuille

2009 ◽  
Vol 24 (31) ◽  
pp. 2551-2563 ◽  
Author(s):  
M. SHARIF ◽  
G. ABBAS

In this paper, the effect of electromagnetic field has been investigated on the spherically symmetric gravitational collapse with the perfect fluid in the presence of positive cosmological constant. Junction conditions between the static exterior and non-static interior spherically symmetric spacetimes are discussed. We study the apparent horizons and their physical significance. It is found that electromagnetic field reduces the bound of cosmological constant by reducing the pressure and hence collapsing process is faster as compared to the perfect fluid case. This work gives the generalization of the perfect fluid case to the charged perfect fluid. Results for the perfect fluid case are recovered.


2000 ◽  
Vol 61 (8) ◽  
Author(s):  
Dragoljub Markovic ◽  
Stuart L. Shapiro

Sign in / Sign up

Export Citation Format

Share Document