scholarly journals Probing Lorentz violation in neutrino propagation from a core-collapse supernova

2012 ◽  
Vol 85 (4) ◽  
Author(s):  
John Ellis ◽  
Hans-Thomas Janka ◽  
Nikolaos E. Mavromatos ◽  
Alexander S. Sakharov ◽  
Edward K. G. Sarkisyan
2019 ◽  
Vol 490 (3) ◽  
pp. 4211-4229 ◽  
Author(s):  
D Gizzi ◽  
E O’Connor ◽  
S Rosswog ◽  
A Perego ◽  
R M Cabezón ◽  
...  

ABSTRACT We present a new, multidimensional implementation of the Advanced Spectral Leakage (ASL) scheme with the purpose of modelling neutrino–matter interactions in neutron star mergers. A major challenge is the neutrino absorption in the semitransparent regime, which is responsible for driving winds from the merger remnant. The composition of such winds is crucial in the understanding of the electromagnetic emission in the recently observed macronova following GW170817. Compared to the original version, we introduce an optical-depth-dependent flux factor to model the average angle of neutrino propagation, and a modulation that accounts for flux anisotropies in non-spherical geometries. We scrutinize our approach by first comparing the new scheme against the original one for a spherically symmetric core-collapse supernova snapshot, both in 1D and in 3D, and additionally against a two-moment (M1) scheme as implemented in 1D into the code GR1D. The luminosities and mean energies agree to a few per cents in most tests. Finally, for the case of a binary merger remnant snapshot we compare the new ASL scheme with the M1 scheme that is implemented in the Eulerian adaptive mesh refinement code flash. We find that the neutrino absorption distribution in the semitransparent regime is overall well reproduced. Both approaches agree to within $\lesssim 15{{\ \rm per\ cent}}$ for the average energies and to better than $\sim 35 {{\ \rm per\ cent}}$ in the total luminosities.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
M. López ◽  
I. Di Palma ◽  
M. Drago ◽  
P. Cerdá-Durán ◽  
F. Ricci

2012 ◽  
Author(s):  
Nozomu Tominaga ◽  
Tomoki Morokuma ◽  
Sergei I. Blinnikov

2013 ◽  
Vol 9 (S296) ◽  
pp. 27-36
Author(s):  
Ken'ichi Nomoto

AbstractAfter the Big Bang, production of heavy elements in the early Universe takes place in the first stars and their supernova explosions. The nature of the first supernovae, however, has not been well understood. The signature of nucleosynthesis yields of the first supernovae can be seen in the elemental abundance patterns observed in extremely metal-poor stars. Interestingly, those abundance patterns show some peculiarities relative to the solar abundance pattern, which should provide important clues to understanding the nature of early generations of supernovae. We review the recent results of the nucleosynthesis yields of massive stars. We examine how those yields are affected by some hydrodynamical effects during the supernova explosions, namely, explosion energies from those of hypernovae to faint supernovae, mixing and fallback of processed materials, asphericity, etc. Those parameters in the supernova nucleosynthesis models are constrained from observational data of supernovae and metal-poor stars.


2011 ◽  
Vol 7 (S279) ◽  
pp. 134-137
Author(s):  
Thierry Foglizzo ◽  
Frédéric Masset ◽  
Jérôme Guilet ◽  
Gilles Durand

AbstractMassive stars end their life with the gravitational collapse of their core and the formation of a neutron star. Their explosion as a supernova depends on the revival of a spherical accretion shock, located in the inner 200km and stalled during a few hundred milliseconds. Numerical simulations suggest that the large scale asymmetry of the neutrino-driven explosion is induced by a hydrodynamical instability named SASI. Its non radial character is able to influence the kick and the spin of the resulting neutron star. The SWASI experiment is a simple shallow water analog of SASI, where the role of acoustic waves and shocks is played by surface waves and hydraulic jumps. Distances in the experiment are scaled down by a factor one million, and time is slower by a factor one hundred. This experiment is designed to illustrate the asymmetric nature of core-collapse supernova.


2021 ◽  
Vol 921 (2) ◽  
pp. 113
Author(s):  
Michael A. Sandoval ◽  
W. Raphael Hix ◽  
O. E. Bronson Messer ◽  
Eric J. Lentz ◽  
J. Austin Harris

2021 ◽  
Author(s):  
Meriem Bendahman ◽  
Matteo Bugli ◽  
Alexis Coleiro ◽  
Marta Colomer Molla ◽  
Gwenhaël de Wasseige ◽  
...  

BIBECHANA ◽  
2014 ◽  
Vol 12 ◽  
pp. 89-95
Author(s):  
Prabandha Nakarmi ◽  
Jeevan Jyoti Nakarmi

We study the possibility of neutrino-neutrino interaction inside the neutrino core of supernova (ρ ≥ 1010 g/cc) and outside the neutrinosphere. The angular dependence of the neutrino-neutrino interaction Hamiltonian causes multi-angle effects that can lead either to oscillation or free streaming of neutrinos. If the angle between interactions is π/2, the neutrinos are trapped inside neutrino core and chances of oscillation increases due to interaction. As the angle gradually changes, the chance of oscillation decreases and free streaming of neutrino can be observed out of core of supernova as shock waves.DOI: http://dx.doi.org/10.3126/bibechana.v12i0.11780            BIBECHANA 12 (2015) 89-95


Sign in / Sign up

Export Citation Format

Share Document