scholarly journals Hidden-sector-assisted 125 GeV Higgs boson

2012 ◽  
Vol 86 (3) ◽  
Author(s):  
Bumseok Kyae ◽  
Jong-Chul Park
Keyword(s):  
2008 ◽  
Vol 23 (30) ◽  
pp. 4817-4827 ◽  
Author(s):  
O. BERTOLAMI ◽  
R. ROSENFELD

We examine a scenario where the Higgs boson is coupled to an additional Standard Model singlet scalar field from a hidden sector. We show that, in the case where this field is very light and has already relaxed to its nonzero vacuum expectation value, one gets a very stringent limit on the mixing angle between the hidden sector scalar and the Higgs field from fifth force experiments. However, this limit does not imply in a small coupling due to the large difference of vacuum expectation values. In the case that the hidden sector scalar is identified with the quintessence field, responsible for the recent acceleration of the universe, the most natural potential describing the interaction is disfavored since it results in a time-variation of the Fermi scale. We show that an ad hoc modification of the potential describing the Higgs interaction with the quintessence field may result in an unified picture of dark matter and dark energy, where dark energy is the zero-mode classical field rolling the usual quintessence potential and the dark matter candidate is the quantum excitation (particle) of the field, which is produced in the universe due to its coupling to the Higgs boson. This coupling also generates a mass for the new particle that, contrary to usual quintessence models, does not have to be small, since it does not affect the evolution of classical field. In this scenario, a feasible dark matter density can be, under conditions, obtained.


2008 ◽  
Vol 78 (5) ◽  
Author(s):  
Shrihari Gopalakrishna ◽  
Sunghoon Jung ◽  
James D. Wells
Keyword(s):  

2010 ◽  
Vol 25 (09) ◽  
pp. 691-701
Author(s):  
TATSURU KIKUCHI

Recently, conceptually new physics beyond the Standard Model has been proposed by Georgi, where a new physics sector becomes conformal and provides "unparticle" which couples to the Standard Model sector through higher dimensional operators in low energy effective theory. Among several possibilities, we focus on operators involving the unparticle and Higgs boson. Once the Higgs develops the vacuum expectation value (VEV), the conformal symmetry is broken and as a result, the mixing between the unparticle and the Higgs boson emerges. In the former part of this paper, we consider a natural realization of bosonic seesaw in the context of unparticle physics. In this framework, the negative mass squared or the electroweak symmetry breaking vacuum is achieved as a result of mass matrix diagonalization. So, the bosonic seesaw mechanism for the electroweak symmetry breaking can naturally be understood in the framework of unparticle physics. In the latter part of this paper, we consider the unparticle as a hidden sector of supersymmetry breaking, and give some phenomenological consequences of this scenario. The result shows that there is a possibility for the unparticle as a hidden sector in SUSY breaking sector, and can provide a solution to the μ problem in SUSY models.


2009 ◽  
Vol 680 (1) ◽  
pp. 88-93 ◽  
Author(s):  
Shrihari Gopalakrishna ◽  
Seung J. Lee ◽  
James D. Wells

2007 ◽  
Vol 2007 (03) ◽  
pp. 036-036 ◽  
Author(s):  
Matthew T Bowen ◽  
Yanou Cui ◽  
James D Wells

Sign in / Sign up

Export Citation Format

Share Document