quintessence field
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 22)

H-INDEX

10
(FIVE YEARS 4)

2021 ◽  
pp. 100934
Author(s):  
Sanjay Mandal ◽  
G. Mustafa ◽  
Zinnat Hassan ◽  
P.K. Sahoo

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Francesc Cunillera ◽  
Antonio Padilla

Abstract We argue that, for string compactifications broadly consistent with swampland constraints, dark energy is likely to signal the beginning of the end of our universe as we know it, perhaps even through decompactification, with possible implications for the cosmological coincidence problem. Thanks to the scarcity (absence?) of stable de Sitter vacua, dark energy in string theory is assumed to take the form of a quintessence field in slow roll. As it rolls, a tower of heavy states will generically descend, triggering an apocalyptic phase transition in the low energy cosmological dynamics after at most a few hundred Hubble times. As a result, dark energy domination cannot continue indefinitely and there is at least a percentage chance that we find ourselves in the first Hubble epoch. We use a toy model of quintessence coupled to a tower of heavy states to explicitly demonstrate the breakdown in the cosmological dynamics as the tower becomes light. This occurs through a large number of corresponding particles being produced after a certain time, overwhelming quintessence. We also discuss some implications for early universe inflation.


Author(s):  
Priyanka Garg ◽  
Archana Dixit ◽  
Anirudh Pradhan

In this paper, we study the mechanism of the cosmic model in the presence of generalized ghost pilgrim dark energy (GGPDE) and matter in locally rotationally symmetric (LRS) Bianchi type-I space-time by the utilization of new holographic DE in Saez–Ballester theory. Here, we discuss all the data for three scenarios, the first is supernovae type-Ia union data, the second is SN Ia data in combination with baryon acoustic oscillation and cosmic microwave background observations and the third is a combination with observational Hubble data and joint light-curve analysis observations. From this, we get a model of our universe, where transit state exists from deceleration to acceleration phase. Here, we have observed that the results yielded by cosmological parameters like [Formula: see text] (energy density), equation of state [Formula: see text], squared speed of sound [Formula: see text] and [Formula: see text]–[Formula: see text] are compatible with the recent observations. The [Formula: see text]–[Formula: see text] trajectories lie in both thawing and freezing regions and the correspondence of the quintessence field with GGPDE is also discussed. Some physical aspects of the GGPDE models are mainly highlighted.


2021 ◽  
Author(s):  
Ragil Ndongmo ◽  
Saleh Mahamat ◽  
Thomas Bouetou Bouetou ◽  
Timoleon Crepin Kofane

2021 ◽  
Vol 81 (5) ◽  
Author(s):  
G. Mustafa ◽  
Ibrar Hussain

AbstractThe null and timelike geodesic motion in the vicinity of the Schwarzschild black hole in the presence of the string cloud parameter a and the quintessence field parameter q is studied. The ranges for both the parameters a and q are determined, which allow the existence of the black hole. In the radial motion of photon, the coordinate time t first decreases with the increasing values of both the parameters a and q and then in the close proximity of the horizon of the black hole, there is a turning point, after which the effect of the quintessence field is just opposite on the time t. For the massive particles, the proper time $$\tau $$ τ decreases with increasing values of the parameter a and increases with increase in the value of the parameter q. In the same case of the massive particles, the coordinate time t decreases with increase in the values of both the parameters a and q. Further, it is found that for test particles, the stable circular orbits exist in this spacetime for small values of both the parameters i.e., for $$0<a\ll 1$$ 0 < a ≪ 1 and $$0<q\ll 1$$ 0 < q ≪ 1 . It is observed that the radii of the null circular orbits increase as the values of the parameters a and q increase. While in the case of the timelike geodesics, the radii of the circular orbits increase as the value of the parameter a increases, and they decrease as the value of the parameter q increases.


2021 ◽  
Vol 36 (07) ◽  
pp. 2150044
Author(s):  
Mayukh Bandyopadhyay ◽  
Ritabrata Biswas

Recently literature is found to be enriched with studies related to anisotropic behaviors of different compact stars in the background of [Formula: see text] gravity in different energy conditions. Quintessence field, as local impacts of cosmic acceleration upon the compact stars, is also very interesting in recent studies. In this paper, the quintessential field effects on the compact stars (mainly on the neutron stars with an wide range of mass distributions), repulsive gravitational effects inside the compact stars due to dark matter distribution in them, charge distribution inside them in strong energy condition, etc. are studied. All required equations of motion using anisotropic property and concept of Massachusetts Institute of Technology bag model are acquired. Black holes surrounded by quintessential matters which satisfy the additive and linearity conditions, with the form of energy tensors were proposed and the corresponding metric was derived by Kiselev.1 The metric, described by Krori and Barua2 with Reissner–Nordström metric3 are compared to find out the different numerical values of unknown parameters. The numerical values are derived and some important parameters like anisotropic stress, adiabatic constant, surface redshift, electric intensity, compactness factor, stability etc. are analyzed deeply to get a clear idea for further study on these types of stars and to understand their nature.


Author(s):  
Umesh Kumar Sharma

In the present work, we construct the Tsallis holographic quintessence model of dark energy in [Formula: see text] gravity with Hubble horizon as infrared (IR) cut-off. In a flat Friedmann–Robertson–Walker (FRW) background, the correspondence among the energy density of the quintessence model with the Tsallis holographic density permits the reconstruction of the dynamics and the potentials for the quintessence field. The suggested Hubble horizon IR cut-off for the Tsallis holographic dark energy (THDE) density acts for two specific cases: (i) THDE 1 and (ii) THDE 2. We have reconstructed the Tsallis holographic quintessence model in the region [Formula: see text] for the equation of state (EoS) parameter for both the cases. we investigate the behavior of several well-known statefinder quantities, like the deceleration parameter, the jerk and the parameter [Formula: see text]. In addition, the quintessence phase of the THDE models is analyzed with swampland conjecture to describe the accelerated expansion of the Universe.


Author(s):  
A. Ravanpak ◽  
G. F. Fadakar

In this paper, we consider a normal branch of the DGP cosmological model with a quintessence scalar field on the brane as the dark energy component. Using the dynamical system approach, we study the stability properties of the model. We find that [Formula: see text], as one of our new dimensionless variables which is defined in terms of the quintessence potential, has a crucial role in the history of the universe. We divide our discussion into two parts: a constant [Formula: see text] and a varying [Formula: see text]. In the case of a constant [Formula: see text] we calculate all the critical points of the model even those at infinity and then assume all of them as instantaneous critical points in the varying [Formula: see text] situation which is the main part of this paper. We find that the effect of the extra dimension in such a model is independent of the value of [Formula: see text]. Then, we consider a Gaussian potential for which [Formula: see text] is not constant but varies from zero to infinity. We discuss the evolution of the dynamical variables of the model and conclude that their asymptotic behaviors follow the trajectories of the moving critical points. Also, we find two different possible fates for the universe. In one of them, it could experience an accelerated expansion, but then enters a decelerating phase and finally reaches a stable matter-dominated solution. In the other scenario, the universe could approach the matter-dominated critical point without experiencing any accelerated expansion. We argue that the first scenario is more compatible with observations.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Yang Liu

AbstractWe employ a ghost model of interacting dark energy to obtain the equation of state $$\omega $$ ω for ghost energy density in an FRW universe in complex quintessence theory. We reconstruct the potential and study the dynamics of the scalar field that describes complex quintessence cosmology. We perform $$\omega -\omega '$$ ω - ω ′ analysis and stability analysis for both non-interacting and interacting cases and find that the same basic conclusion as for the real model, where $$\omega ' = d\omega / d ln a$$ ω ′ = d ω / d l n a . Taking account of the effect of the complex part and assuming the real part of the quintessence field to be a slow-rolling field, we conclude that the non-interacting model cannot describe the real universe since this will lead to fractional energy density $$\Omega _D > 1$$ Ω D > 1 , where $$\Omega _D$$ Ω D can be defined as the ratio of $$\rho _D$$ ρ D to $$\rho _{cr}$$ ρ cr . However, for the interacting case, if we take present $$\Omega _D =0.73$$ Ω D = 0.73 , then we can determine that $$b^2 = 0.0849$$ b 2 = 0.0849 , where $$b^2$$ b 2 is the interaction coupling parameter between matter and dark energy. In the real quintessence model, $$\Omega _D$$ Ω D and $$b^2$$ b 2 are independent parameters, whereas in the complex quintessence model, we conclude that there is a relationship between these two parameters.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Kourosh Nozari ◽  
Milad Hajebrahimi ◽  
Sara Saghafi

AbstractIt is well known that quantum effects may lead to removal of the intrinsic singularity point of back holes. Also, the quintessence scalar field is a candidate model for describing late-time acceleration expansion. Accordingly, Kazakov and Solodukhin considered the existence of back-reaction of the spacetime due to the quantum fluctuations of the background metric to deform a Schwarzschild black hole, which led to a change of the intrinsic singularity of the black hole to a 2-sphere with a radius of the order of the Planck length. Also, Kiselev rewrote the Schwarzschild metric by taking into account the quintessence field in the background. In this study, we consider the quantum-corrected Schwarzschild black hole inspired by Kazakov–Solodukhin’s work, and the Schwarzschild black hole surrounded by quintessence deduced by Kiselev to study the mutual effects of quantum fluctuations and quintessence on the accretion onto the black hole. Consequently, the radial component of the 4-velocity and the proper energy density of the accreting fluid have a finite value on the surface of its central 2-sphere due to the presence of quantum corrections. Also, by comparing the accretion parameters in different kinds of black holes, we infer that the presence of a point-like electric charge in the spacetime is somewhat similar to some quantum fluctuations in the background metric.


Sign in / Sign up

Export Citation Format

Share Document