scholarly journals CoGeNT: A search for low-mass dark matter usingp-type point contact germanium detectors

2013 ◽  
Vol 88 (1) ◽  
Author(s):  
C. E. Aalseth ◽  
P. S. Barbeau ◽  
J. Colaresi ◽  
J. I. Collar ◽  
J. Diaz Leon ◽  
...  
2010 ◽  
Vol 25 (11n12) ◽  
pp. 944-950
Author(s):  
HENRY T. WONG

The theme of the TEXONO research program is on the studies of low energy neutrino and dark matter physics. The current goals are on the development of germanium detectors with sub-keV sensitivities to realize experiments on neutrino magnetic moments, neutrino-nucleus coherent scattering, as well as WIMP dark matter searches. A threshold of 100–200 eV was achieved with prototype detectors at the Kuo-Sheng Neutrino Laboratory. New limits were placed for low-mass WIMPs. The dark matter program will move to a new underground laboratory currently under construction in Sichuan, China.


2013 ◽  
Vol 37 (12) ◽  
pp. 126002 ◽  
Author(s):  
Ke-Jun Kang ◽  
Qian Yue ◽  
Yu-Cheng Wu ◽  
Jian-Ping Cheng ◽  
Yuan-Jing Li ◽  
...  

2013 ◽  
Vol 28 (02) ◽  
pp. 1340007 ◽  
Author(s):  
◽  
QIAN YUE ◽  
HENRY T. WONG

Germanium detectors with sub-keV sensitivities open a window to search for low-mass WIMP dark matter. The CDEX-TEXONO Collaboration is conducting the first research program at the new China Jinping Underground Laboratory with this approach. The status and plans of the laboratory and the experiment are discussed.


2016 ◽  
Vol 273-275 ◽  
pp. 250-255
Author(s):  
Arun Kumar Soma ◽  
Hau-Bin Li ◽  
Shin-Ted Lin ◽  
Henry Tsz-King Wong

2021 ◽  
Vol 504 (1) ◽  
pp. 648-653
Author(s):  
Nilanjan Banik ◽  
Jo Bovy

ABSTRACT Stellar tidal streams are sensitive tracers of the properties of the gravitational potential in which they orbit and detailed observations of their density structure can be used to place stringent constraints on fluctuations in the potential caused by, e.g. the expected populations of dark matter subhaloes in the standard cold dark matter (CDM) paradigm. Simulations of the evolution of stellar streams in live N-body haloes without low-mass dark matter subhaloes, however, indicate that streams exhibit significant perturbations on small scales even in the absence of substructure. Here, we demonstrate, using high-resolution N-body simulations combined with sophisticated semi-analytical and simple analytical models, that the mass resolutions of 104–$10^5\, \rm {M}_{\odot }$ commonly used to perform such simulations cause spurious stream density variations with a similar magnitude on large scales as those expected from a CDM-like subhalo population and an order of magnitude larger on small, yet observable, scales. We estimate that mass resolutions of ${\approx}100\, \rm {M}_{\odot }$ (${\approx}1\, \rm {M}_{\odot }$) are necessary for spurious, numerical density variations to be well below the CDM subhalo expectation on large (small) scales. That streams are sensitive to a simulation’s particle mass down to such small masses indicates that streams are sensitive to dark matter clustering down to these low masses if a significant fraction of the dark matter is clustered or concentrated in this way, for example, in MACHO models with masses of 10–$100\, \rm {M}_{\odot }$.


2021 ◽  
Vol 104 (1) ◽  
Author(s):  
D. S. Akerib ◽  
S. Alsum ◽  
H. M. Araújo ◽  
X. Bai ◽  
J. Balajthy ◽  
...  

2020 ◽  
Vol 494 (4) ◽  
pp. 4706-4712 ◽  
Author(s):  
Andrew Robertson ◽  
Richard Massey ◽  
Vincent Eke

ABSTRACT We assess a claim that observed galaxy clusters with mass ${\sim}10^{14} \mathrm{\, M_\odot }$ are more centrally concentrated than predicted in lambda cold dark matter (ΛCDM). We generate mock strong gravitational lensing observations, taking the lenses from a cosmological hydrodynamical simulation, and analyse them in the same way as the real Universe. The observed and simulated lensing arcs are consistent with one another, with three main effects responsible for the previously claimed inconsistency. First, galaxy clusters containing baryonic matter have higher central densities than their counterparts simulated with only dark matter. Secondly, a sample of clusters selected because of the presence of pronounced gravitational lensing arcs preferentially finds centrally concentrated clusters with large Einstein radii. Thirdly, lensed arcs are usually straighter than critical curves, and the chosen image analysis method (fitting circles through the arcs) overestimates the Einstein radii. After accounting for these three effects, ΛCDM predicts that galaxy clusters should produce giant lensing arcs that match those in the observed Universe.


Sign in / Sign up

Export Citation Format

Share Document