scholarly journals Greybody factors for scalar fields emitted by a higher-dimensional Schwarzschild–de Sitter black hole

2014 ◽  
Vol 90 (12) ◽  
Author(s):  
P. Kanti ◽  
T. Pappas ◽  
N. Pappas
2017 ◽  
Vol 26 (13) ◽  
pp. 1750141 ◽  
Author(s):  
Yang Huang ◽  
Dao-Jun Liu ◽  
Xin-Zhou Li

In this paper, a detailed analysis for superradiant stability of the system composed by a [Formula: see text]-dimensional Reissner–Nordström-anti-de Sitter (RN-AdS) black hole and a reflecting mirror under charged scalar perturbations are presented in the linear regime. It is found that the stability of the system is heavily affected by the mirror radius as well as the mass of the scalar perturbation, AdS radius and the dimension of spacetime. In a higher dimensional spacetime, the degree of instability of the superradiant modes will be severely weakened. Nevertheless, the degree of instability can be magnified significantly by choosing a suitable value of the mirror radius. Remarkably, when the mirror radius is smaller than a threshold value the system becomes stable. We also find that massive charged scalar fields cannot trigger the instabilities in the background of [Formula: see text]-dimensional asymptotically flat RN black hole. For a given scalar charge, a small RN-AdS black hole can be superradiantly unstable, while a large one may be always stable under charged scalar field with or without a reflecting mirror. We also show that these results can be easily expounded and understood with the help of factorized potential analysis.


2013 ◽  
Vol 28 (18) ◽  
pp. 1350084 ◽  
Author(s):  
BOBBY E. GUNARA ◽  
FREDDY P. ZEN ◽  
FIKI T. AKBAR ◽  
AGUS SUROSO ◽  
ARIANTO

In this paper, we study several aspects of extremal spherical symmetric black hole solutions of four-dimensional N = 1 supergravity coupled to vector and chiral multiplets with the scalar potential turned on. In the asymptotic region, the complex scalars are fixed and regular which can be viewed as the critical points of the black hole and the scalar potentials with vanishing scalar charges. It follows that the asymptotic geometries are of a constant and nonzero scalar curvature which are generally not Einstein. These spaces could also correspond to the near horizon geometries which are the product spaces of a two anti-de Sitter surface and the two sphere if the value of the scalars in both regions coincide. In addition, we prove the local existence of nontrivial radius dependent complex scalar fields which interpolate between the horizon and the asymptotic region. We finally give some simple ℂn-models with both linear superpotential and gauge couplings.


2008 ◽  
Vol 23 (14n15) ◽  
pp. 2169-2171 ◽  
Author(s):  
YUKINORI YASUI

This paper gives a brief review of recent results on higher dimensional black hole solutions. It is shown that the D-dimensional Kerr-NUT-de Sitter spacetime constructed by Chen-Lü-Pope is the only spacetime admitting a rank-2 conformal Killing-Yano tensor with a certain symmetry.


2020 ◽  
Vol 72 (8) ◽  
pp. 085403 ◽  
Author(s):  
Xiong-Ying Guo ◽  
Huai-Fan Li ◽  
Li-Chun Zhang ◽  
Ren Zhao

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Meng-Sen Ma ◽  
Li-Chun Zhang ◽  
Hui-Hua Zhao ◽  
Ren Zhao

We study the phase transition of charged Gauss-Bonnet-de Sitter (GB-dS) black hole. For black holes in de Sitter spacetime, there is not only black hole horizon, but also cosmological horizon. The thermodynamic quantities on both horizons satisfy the first law of the black hole thermodynamics, respectively; moreover, there are additional connections between them. Using the effective temperature approach, we obtained the effective thermodynamic quantities of charged GB-dS black hole. According to Ehrenfest classification, we calculate some response functions and plot their figures, from which one can see that the spacetime undergoes a second-order phase transition at the critical point. It is shown that the critical values of effective temperature and pressure decrease with the increase of the value of GB parameterα.


2018 ◽  
Vol 57 (7) ◽  
pp. 2041-2063 ◽  
Author(s):  
Angélica González ◽  
Román Linares ◽  
Marco Maceda ◽  
Oscar Sánchez-Santos

Sign in / Sign up

Export Citation Format

Share Document