scholarly journals Energy transfer from baryons to dark matter as a unified solution to small-scale structure issues of the ΛCDM model

2018 ◽  
Vol 98 (6) ◽  
Author(s):  
A. Del Popolo ◽  
Francesco Pace ◽  
Morgan Le Delliou ◽  
Xiguo Lee
2020 ◽  
Vol 124 (4) ◽  
Author(s):  
Xiaoyong Chu ◽  
Camilo Garcia-Cely ◽  
Hitoshi Murayama

2008 ◽  
Vol 77 (6) ◽  
Author(s):  
Francesca Borzumati ◽  
Torsten Bringmann ◽  
Piero Ullio

1997 ◽  
Vol 167 (9) ◽  
pp. 913 ◽  
Author(s):  
Aleksandr V. Gurevich ◽  
Kirill P. Zybin ◽  
V.A. Sirota

2019 ◽  
Vol 488 (4) ◽  
pp. 5085-5092 ◽  
Author(s):  
Sean Brennan ◽  
Andrew J Benson ◽  
Francis-Yan Cyr-Racine ◽  
Charles R Keeton ◽  
Leonidas A Moustakas ◽  
...  

Abstract In the cold dark matter (CDM) picture of structure formation, galaxy mass distributions are predicted to have a considerable amount of structure on small scales. Strong gravitational lensing has proven to be a useful tool for studying this small-scale structure. Much of the attention has been given to detecting individual dark matter subhaloes through lens modelling, but recent work has suggested that the full population of subhaloes could be probed using a power spectrum analysis. In this paper, we quantify the power spectrum of small-scale structure in simulated galaxies, with the goal of understanding theoretical predictions and setting the stage for using measurements of the power spectrum to test dark matter models. We use a sample of simulated galaxies generated from the galacticus semi-analytic model to determine the power spectrum distribution first in the CDM paradigm and then in a warm dark matter scenario. We find that a measurement of the slope and amplitude of the power spectrum on galaxy strong lensing scales (k ∼ 1 kpc−1) could be used to distinguish between CDM and alternate dark matter models, especially if the most massive subhaloes can be directly detected via gravitational imaging.


Author(s):  
C. Power

AbstractThe characteristic prediction of the Cold Dark Matter (CDM) model of cosmological structure formation is that the Universe should contain a wealth of small-scale structure—low-mass dark matter haloes and subhaloes. However, galaxy formation is inefficient in their shallow potential wells and so we expect these low-mass haloes and subhaloes to be dark. Can we tell the difference between a Universe in which these low-mass haloes are present but dark and one in which they never formed, thereby providing a robust test of the CDM model? We address this question using cosmological N-body simulations to examine how properties of low-mass haloes that are potentially accessible to observation, such as their spatial clustering, rate of accretions and mergers onto massive galaxies, and the angular momentum content of massive galaxies, differ between a fiducial ΛCDM model and dark matter models in which low-mass halo formation is suppressed. Adopting an effective cut-off mass scale Mcut below which small-scale power is suppressed in the initial conditions, we study dark matter models in which Mcut varies between 5×109h−1M⊙ and 1011h−1M⊙, equivalent to the host haloes of dwarf and low-mass galaxies. Our results show that both the clustering strength of low-mass haloes around galaxy-mass primaries and the rate at which they merge with these primaries are sensitive to the assumed value of Mcut; in contrast, suppressing low-mass halo formation has little influence on the angular momentum content of galaxy-mass haloes—it is the quiescence or violence of a halo's assembly history that has a more marked effect. However, we expect that measuring the effect on spatial clustering or the merger rate is likely to be observationally difficult for realistic values of Mcut, and so isolating the effect of this small-scale structure would appear to be remarkably difficult to detect, at least in the present day Universe.


Sign in / Sign up

Export Citation Format

Share Document