Higher-order correction terms to the nonlinear amplification or absorption, the nonlinear refractive index, and the intrapulse Raman scattering

2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Ivan M. Uzunov ◽  
Todor N. Arabadzhiev
2007 ◽  
Vol 39 (4) ◽  
pp. 1070-1097 ◽  
Author(s):  
J. Blanchet ◽  
P. Glynn

Consider a sequence X = (Xn: n ≥ 1) of independent and identically distributed random variables, and an independent geometrically distributed random variable M with parameter p. The random variable SM = X1 + ∙ ∙ ∙ + XM is called a geometric sum. In this paper we obtain asymptotic expansions for the distribution of SM as p ↘ 0. If EX1 > 0, the asymptotic expansion is developed in powers of p and it provides higher-order correction terms to Renyi's theorem, which states that P(pSM > x) ≈ exp(-x/EX1). Conversely, if EX1 = 0 then the expansion is given in powers of √p. We apply the results to obtain corrected diffusion approximations for the M/G/1 queue. These expansions follow in a unified way as a consequence of new uniform renewal theory results that are also developed in this paper.


2007 ◽  
Vol 39 (04) ◽  
pp. 1070-1097 ◽  
Author(s):  
J. Blanchet ◽  
P. Glynn

Consider a sequenceX= (Xn:n≥ 1) of independent and identically distributed random variables, and an independent geometrically distributed random variableMwith parameterp. The random variableSM=X1+ ∙ ∙ ∙ +XMis called a geometric sum. In this paper we obtain asymptotic expansions for the distribution ofSMasp↘ 0. If EX1> 0, the asymptotic expansion is developed in powers ofpand it provides higher-order correction terms to Renyi's theorem, which states that P(pSM>x) ≈ exp(-x/EX1). Conversely, if EX1= 0 then the expansion is given in powers of √p. We apply the results to obtain corrected diffusion approximations for the M/G/1 queue. These expansions follow in a unified way as a consequence of new uniform renewal theory results that are also developed in this paper.


2014 ◽  
Vol 29 (31) ◽  
pp. 1450178 ◽  
Author(s):  
Abolfazl Mirjalili ◽  
Mohammad Reza Khellat

There is an ambiguity in the perturbative series of QCD observables on how to choose the renormalization and even more the factorization scale. There are many approaches to overcome this obstacle and to fix the scales. Among them, there is the Brodsky–Lepage–Mackenzie (BLM) approach which is based on an intriguing principle. Based on the BLM approach, we intend to absorb the nf-terms in the pQCD series that rightly determines the running behavior of the running coupling into the running coupling. We make an extensive use of the BLM approach to investigate the details of predicting higher order correction terms of some QCD observables. By this way we test different methods to improve the prediction process. It is also found out that an overall normalization could change BLM predictions effectively.


2020 ◽  
pp. 131-138

The nonlinear optical properties of pepper oil are studied by diffraction ring patterns and Z-scan techniques with continuous wave beam from solid state laser at 473 nm wavelength. The nonlinear refractive index of the sample is calculated by both techniques. The sample show high nonlinear refractive index. Based on Fresnel-Kirchhoff diffraction integral, the far-field intensity distributions of ring patterns have been calculated. It is found that the experimental results are in good agreement with the theoretical results. Also the optical limiting property of pepper oil is reported. The results obtained in this study prove that the pepper oil has applications in nonlinear optical devices.


Sign in / Sign up

Export Citation Format

Share Document