renormalization scale
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 17)

H-INDEX

14
(FIVE YEARS 1)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Diogo Boito ◽  
Cristiane Y. London ◽  
Pere Masjuan

Abstract We use rational approximants to study missing higher orders in the massless scalar-current quark correlator. We predict the yet unknown six-loop coefficient of its imaginary part, related to Γ(H → b$$ \overline{b} $$ b ¯ ), to be c5 = −6900 ± 1400. With this result, the perturbative series becomes almost insensitive to renormalization scale variations and the intrinsic QCD truncation uncertainty is tiny. This confirms the expectation that higher-order loop computations for this quantity will not be required in the foreseeable future, as the uncertainty in Γ(H → b$$ \overline{b} $$ b ¯ ) will remain largely dominated by the Standard Model parameters.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Qing Yu ◽  
Xing-Gang Wu ◽  
Hua Zhou ◽  
Xu-Dong Huang

AbstractBased on the operator product expansion, the perturbative and nonperturbative contributions to the polarized Bjorken sum rule (BSR) can be separated conveniently, and the nonperturbative one can be fitted via a proper comparison with the experimental data. In the paper, we first give a detailed study on the pQCD corrections to the leading-twist part of BSR. Basing on the accurate pQCD prediction of BSR, we then give a novel fit of the non-perturbative high-twist contributions by comparing with JLab data. Previous pQCD corrections to the leading-twist part derived under conventional scale-setting approach still show strong renormalization scale dependence. The principle of maximum conformality (PMC) provides a systematic and strict way to eliminate conventional renormalization scale-setting ambiguity by determining the accurate $$\alpha _s$$ α s -running behavior of the process with the help of renormalization group equation. Our calculation confirms the PMC prediction satisfies the standard renormalization group invariance, e.g. its fixed-order prediction does scheme-and-scale independent. In low $$Q^2$$ Q 2 -region, the effective momentum of the process is small and in order to derive a reliable prediction, we adopt four low-energy $$\alpha _s$$ α s models to do the analysis, i.e. the model based on the analytic perturbative theory (APT), the Webber model (WEB), the massive pQCD model (MPT) and the model under continuum QCD theory (CON). Our predictions show that even though the high-twist terms are generally power suppressed in high $$Q^2$$ Q 2 -region, they shall have sizable contributions in low and intermediate $$Q^2$$ Q 2 domain. Based on the more accurate scheme-and-scale independent pQCD prediction, our newly fitted results for the high-twist corrections at $$Q^2=1\;\mathrm{GeV}^2$$ Q 2 = 1 GeV 2 are, $$f_2^{p-n}|_{\mathrm{APT}}=-0.120\pm 0.013$$ f 2 p - n | APT = - 0.120 ± 0.013 , $$f_2^{p-n}|_\mathrm{WEB}=-0.081\pm 0.013$$ f 2 p - n | WEB = - 0.081 ± 0.013 , $$f_2^{p-n}|_{\mathrm{MPT}}=-0.128\pm 0.013$$ f 2 p - n | MPT = - 0.128 ± 0.013 and $$f_2^{p-n}|_{\mathrm{CON}}=-0.139\pm 0.013$$ f 2 p - n | CON = - 0.139 ± 0.013 ; $$\mu _6|_\mathrm{APT}=0.003\pm 0.000$$ μ 6 | APT = 0.003 ± 0.000 , $$\mu _6|_{\mathrm{WEB}}=0.001\pm 0.000$$ μ 6 | WEB = 0.001 ± 0.000 , $$\mu _6|_\mathrm{MPT}=0.003\pm 0.000$$ μ 6 | MPT = 0.003 ± 0.000 and $$\mu _6|_{\mathrm{CON}}=0.002\pm 0.000$$ μ 6 | CON = 0.002 ± 0.000 , respectively, where the errors are squared averages of those from the statistical and systematic errors from the measured data.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Xu-Chang Zheng ◽  
Xing-Gang Wu ◽  
Xu-Dong Huang

Abstract In the paper, we calculate the fragmentation functions for c → ηc and b → ηb up to next-to-leading-order (NLO) QCD accuracy. The ultraviolet divergences in the real corrections are removed through operator renormalization under the modified min- imal subtraction scheme. We then obtain the fragmentation functions $$ {D}_{c\to {\eta}_c} $$ D c → η c (z, μF) and $$ {D}_{b\to {\eta}_b} $$ D b → η b (z, μF) up to NLO QCD accuracy, which are presented as figures and fitting functions. The numerical results show that the NLO corrections are significant. The sensitives of the fragmentation functions to the renormalization scale and the factorization scale are analyzed explicitly.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Xu-Dong Huang ◽  
Xing-Gang Wu ◽  
Xu-Chang Zheng ◽  
Qing Yu ◽  
Sheng-Quan Wang ◽  
...  

AbstractIn the paper, we study the properties of the Z-boson hadronic decay width by using the $$\mathcal {O}(\alpha _s^4)$$ O ( α s 4 ) -order quantum chromodynamics (QCD) corrections with the help of the principle of maximum conformality (PMC). By using the PMC single-scale approach, we obtain an accurate renormalization scale-and-scheme independent perturbative QCD (pQCD) correction for the Z-boson hadronic decay width, which is independent to any choice of renormalization scale. After applying the PMC, a more convergent pQCD series has been obtained; and the contributions from the unknown $$\mathcal {O}(\alpha _s^5)$$ O ( α s 5 ) -order terms are highly suppressed, e.g. conservatively, we have $$\Delta \Gamma _{\mathrm{Z}}^{\mathrm{had}}|^{{{\mathcal {O}}}(\alpha _s^5)}_{\mathrm{PMC}}\simeq \pm 0.004$$ Δ Γ Z had | PMC O ( α s 5 ) ≃ ± 0.004 MeV. In combination with the known electro-weak (EW) corrections, QED corrections, EW–QCD mixed corrections, and QED–QCD mixed corrections, our final prediction of the hadronic Z decay width is $$\Gamma _{\mathrm{Z}}^{\mathrm{had}}=1744.439^{+1.390}_{-1.433}$$ Γ Z had = 1744 . 439 - 1.433 + 1.390 MeV, which agrees with the PDG global fit of experimental measurements, $$1744.4\pm 2.0$$ 1744.4 ± 2.0 MeV.


Author(s):  
S. Viaggiu

In this paper, we consider the nature of the cosmological constant as due by quantum fluctuations. Quantum fluctuations are generated at Planckian scales by noncommutative effects and watered down at larger scales up to a decoherence scale [Formula: see text], where classicality is reached. In particular, we formally depict the presence of the scale at [Formula: see text] by adopting a renormalization group approach. As a result, an analogy arises between the expression for the observed cosmological constant [Formula: see text] generated by quantum fluctuations and the one expected by a renormalization group approach, provided that the renormalization scale [Formula: see text] is suitably chosen. In this framework, the decoherence scale [Formula: see text] is naturally identified with the value [Formula: see text] with [Formula: see text] representing the minimum allowed particle-momentum for our visible universe. Finally, by mimicking renormalization group approach, we present a technique to formally obtain a nontrivial infrared (IR) fixed point at [Formula: see text] in our model.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Huai-Min Yu ◽  
Wen-Long Sang ◽  
Xu-Dong Huang ◽  
Jun Zeng ◽  
Xing-Gang Wu ◽  
...  

Abstract In the paper, we present QCD predictions for γ + ηc production at an electron-positron collider up to next-to-next-to-leading order (NNLO) accuracy without renormalization scale ambiguities. The NNLO total cross-section for e+ + e− → γ + ηc using the conventional scale-setting approach has large renormalization scale ambiguities, usually estimated by choosing the renormalization scale to be the e+e− center-of-mass collision energy $$ \sqrt{s} $$ s . The Principle of Maximum Conformality (PMC) provides a systematic way to eliminate such renormalization scale ambiguities by summing the nonconformal β contributions into the QCD coupling αs(Q2). The renormalization group equation then sets the value of αs for the process. The PMC renormalization scale reflects the virtuality of the underlying process, and the resulting predictions satisfy all of the requirements of renormalization group invariance, including renormalization scheme invariance. After applying the PMC, we obtain a renormalization scale-and-scheme independent prediction, σ|NNLO,PMC ≃ 41.18 fb for $$ \sqrt{s} $$ s =10.6 GeV. The resulting pQCD series matches the series for conformal theory and thus has no divergent renormalon contributions. The large K factor which contributes to this process reinforces the importance of uncalculated NNNLO and higher-order terms. Using the PMC scale-and-scheme independent conformal series and the Padé approximation approach, we predict σ|NNNLO,PMC+Pade ≃ 18.99 fb, which is consistent with the recent BELLE measurement $$ {\sigma}^{\mathrm{obs}}={16.58}_{-9.93}^{+10.51} $$ σ obs = 16.58 − 9.93 + 10.51 fb at $$ \sqrt{s} $$ s ≃ 10.6 GeV. This procedure also provides a first estimate of the NNNLO contribution.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Antonio Racioppi

Abstract We consider a model of quartic inflation where the inflaton is coupled non-minimally to gravity and the self-induced radiative corrections to its effective potential are dominant. We perform a comparative analysis considering two different formulations of gravity, metric or Palatini, and two different choices for the renormalization scale, widely known as prescription I and II. Moreover we comment on the eventual compatibility of the results with the final data release of the Planck mission.


2020 ◽  
Vol 102 (9) ◽  
Author(s):  
Alexander Lenz ◽  
Maria Laura Piscopo ◽  
Christos Vlahos

Author(s):  
Marco Bonvini

AbstractWe consider the problem of quantifying the uncertainty on theoretical predictions based on perturbation theory due to missing higher orders. The most widely used approach, scale variation, is largely arbitrary and it has no probabilistic foundation, making it not suitable for robust data analysis. In 2011, Cacciari and Houdeau proposed a model based on a Bayesian approach to provide a probabilistic definition of the theory uncertainty from missing higher orders. In this work, we propose an improved version of the Cacciari–Houdeau model, that overcomes some limitations. In particular, it performs much better in case of perturbative expansions with large high-order contributions (as it often happens in QCD). In addition, we propose an alternative model based on the same idea of scale variation, which overcomes some of the shortcomings of the canonical approach, on top of providing a probabilistically-sound result. Moreover, we address the problem of the dependence of theoretical predictions on unphysical scales (such as the renormalization scale), and propose a solution to obtain a scale-independent result within the probabilistic framework. We validate these methods on expansions with known sums, and apply them to a number of physical observables in particle physics. We also investigate some variations, improvements and combinations of the models. We believe that these methods provide a powerful tool to reliably estimate theory uncertainty from missing higher orders that can be used in any physics analysis. The results of this work are easily accessible through a public code named .


Sign in / Sign up

Export Citation Format

Share Document