Kinetic phase transition in the antiferromagnetic Ising model with competing dynamics

1998 ◽  
Vol 57 (3) ◽  
pp. 3625-3628 ◽  
Author(s):  
Yu-qiang Ma ◽  
Ji-wen Liu ◽  
W. Figueiredo
2014 ◽  
Vol 410 ◽  
pp. 370-379 ◽  
Author(s):  
A.G. El Hachimi ◽  
M. El Yadari ◽  
A. Benyoussef ◽  
A. El Kenz ◽  
L. Bahmad

2017 ◽  
Vol 31 (3) ◽  
pp. 805-814 ◽  
Author(s):  
S. Sidi Ahmed ◽  
A. Nid-bahami ◽  
A. G. El Hachimi ◽  
L. Bahmad ◽  
A. Benyoussef ◽  
...  

2006 ◽  
Vol 17 (04) ◽  
pp. 591-600
Author(s):  
KWANGHOON CHUNG ◽  
MOOKYUNG CHEON ◽  
IKSOO CHANG

The critical coarsening dynamics of the spin S =1/2, 3/2 antiferromagnetic Ising model on a triangular lattice is studied by the dynamic Monte Carlo simulation using a heat bath algorithm. The triangular antiferromagnetic Ising (TAI) model possesses an intrinsic geometrical frustration and a large degeneracy of ground state which may affect the equilibrium and non-equilibrium critical behaviors. The S =1/2 TAI has no phase transition at a finite temperature, but it was suggested that the S =3/2 TAI has the Kosterlitz–Thouless (KT)-type phase transition at a finite temperature. We employ a finite size scaling approach for the correlation function from the short-time dynamics of the S =1/2, 3/2 TAI to calculate the values of the static critical exponent η and the dynamic exponent z. For the S =1/2 TAI, our dynamic scaling analysis provides η =0.498±0.006 and z =2.278±0.020 at T =0, agreeing with the previous results. For the S =3/2 TAI, after identifying a KT-transition temperature TKT =0.51±0.01, we find the temperature-dependent η ranging from 0.301±0.008 at T =0.51 to 0.224±0.016 at T =0 along the KT-line whereas the value of z =2.20±0.06 is constant for T≤TKT. It is shown that the spin S =3/2 TAI model and the two-dimensional XY model, sharing the KT-type phase transition, exhibit similar static critical and coarsening dynamics behavior. For both the S =1/2, 3/2 TAI, the value of z (η) is compatible with (larger than) that of the Ising model at Tc and the XY model for T≤TKT in two-dimension. Our results imply that although the quasi-long-range order disappears with ηXY =0 in the two-dimensional XY model at T =0, the S =3/2 TAI still maintains it with η TAI =0.224 due to the effect of a frustration and a high degeneracy of ground state.


2021 ◽  
pp. 1-35
Author(s):  
FERENC BENCS ◽  
PJOTR BUYS ◽  
LORENZO GUERINI ◽  
HAN PETERS

Abstract We investigate the location of zeros for the partition function of the anti-ferromagnetic Ising model, focusing on the zeros lying on the unit circle. We give a precise characterization for the class of rooted Cayley trees, showing that the zeros are nowhere dense on the most interesting circular arcs. In contrast, we prove that when considering all graphs with a given degree bound, the zeros are dense in a circular sub-arc, implying that Cayley trees are in this sense not extremal. The proofs rely on describing the rational dynamical systems arising when considering ratios of partition functions on recursively defined trees.


Sign in / Sign up

Export Citation Format

Share Document