PHASE TRANSITION OF THE ISING MODEL ON THE TWO-DIMENSIONAL QUASICRYSTALS

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-1387-C8-1388
Author(s):  
Y. Okabe ◽  
K. Niizeki
2003 ◽  
Vol 14 (10) ◽  
pp. 1305-1320 ◽  
Author(s):  
BÜLENT KUTLU

The two-dimensional antiferromagnetic spin-1 Ising model with positive biquadratic interaction is simulated on a cellular automaton which based on the Creutz cellular automaton for square lattice. Phase diagrams characterizing phase transition of the model are presented for a comparison with those obtained from other calculations. We confirm the existence of the intermediate phase observed in previous works for some values of J/K and D/K. The values of the static critical exponents (β, γ and ν) are estimated within the framework of the finite-size scaling theory for D/K<2J/K. Although the results are compatible with the universal Ising critical behavior in the region of D/K<2J/K-4, the model does not exhibit any universal behavior in the interval 2J/K-4<D/K<2J/K.


2000 ◽  
Vol 10 (01) ◽  
pp. 251-256 ◽  
Author(s):  
FRANCISCO SASTRE ◽  
GABRIEL PÉREZ

The diffusively coupled lattice of odd-symmetric chaotic maps introduced by Miller and Huse undergoes a continuous ordering phase transition, belonging to a universality class close but not identical to that of the two-dimensional Ising model. Here we consider a natural mean-field approach for this model, and find that it does not have a well-defined phase transition. We show how this is due to the coexistence of two attractors in its mean-field description, for the region of interest in the coupling. The behavior of the model in this limit then becomes dependent on initial conditions, as can be seen in direct simulations.


1993 ◽  
Vol 07 (23) ◽  
pp. 1523-1526 ◽  
Author(s):  
ROBERT OWCZAREK

In this letter, studies of knotted vortex structures in superfluid helium are continued. A model of superfluid phase transition (λ-transition) is built in this framework. Similarities of this model to the two-dimensional Ising model are shown. Dependence of specific heat of superfluid helium on temperature near the λ point is explained.


1999 ◽  
Vol 36 (04) ◽  
pp. 1101-1115 ◽  
Author(s):  
Olle Häggström ◽  
Johan Jonasson

The random triangle model was recently introduced as a random graph model that captures the property of transitivity that is often found in social networks, i.e. the property that given that two vertices are second neighbors, they are more likely to be neighbors. For parameters p ∊ [0,1] and q ≥ 1, and a finite graph G = (V, E), it assigns to elements η of {0,1} E probabilities which are proportional to where t(η) is the number of triangles in the open subgraph. In this paper the behavior of the random triangle model on the two-dimensional triangular lattice is studied. By mapping the system onto an Ising model with external field on the hexagonal lattice, it is shown that phase transition occurs if and only if p = (q−1)−2/3 and q &gt; q c for a critical value q c which turns out to equal It is furthermore demonstrated that phase transition cannot occur unless p = p c (q), the critical value for percolation of open edges for given q. This implies that for q ≥ q c , p c (q) = (q−1)−2/3.


1999 ◽  
Vol 66 (2) ◽  
pp. 289-298 ◽  
Author(s):  
M. Ortiz

A statistical mechanical theory of forest hardening is developed in which yielding arises as a phase transition. For simplicity, we consider the case of a single dislocation loop moving on a slip plane through randomly distributed forest dislocations, which we treat as point obstacles. The occurrence of slip at the sites occupied by these obstacles is assumed to require the expenditure of a certain amount of work commensurate with the strength of the obstacle. The case of obstacles of infinite strength is treated in detail. We show that the behavior of the dislocation loop as it sweeps the slip plane under the action of a resolved shear stress is identical to that of a lattice gas, or, equivalently, to that of the two-dimensional spin-1/2 Ising model. In particular, there exists a critical temperature Tc below which the system exhibits a yield point, i.e., the slip strain increases sharply when the applied resolved shear stress attains a critical value. Above the critical temperature the yield point disappears and the slip strain depends continuously on the applied stress. The critical exponents, which describe the behavior of the system near the critical temperature, coincide with those of the two-dimensional spin-1/2 Ising model.


SPIN ◽  
2018 ◽  
Vol 08 (03) ◽  
pp. 1850010
Author(s):  
D. Farsal ◽  
M. Badia ◽  
M. Bennai

The critical behavior at the phase transition of the ferromagnetic two-dimensional anisotropic Ising model with next-nearest neighbor (NNN) couplings in the presence of the field is determined using mainly Monte Carlo (MC) method. This method is used to investigate the phase diagram of the model and to verify the existence of a divergence at null temperature which often appears in two-dimensional systems. We analyze also the influence of the report of the NNN interactions [Formula: see text] and the magnetic field [Formula: see text] on the critical temperature of the system, and we show that the critical temperature depends on the magnetic field for positive values of the interaction. Finally, we have investigated other thermodynamical qualities such as the magnetic susceptibility [Formula: see text]. It has been shown that their thermal behavior depends qualitatively and quantitatively on the strength of NNN interactions and the magnetic field.


Sign in / Sign up

Export Citation Format

Share Document