scholarly journals Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences

1999 ◽  
Vol 60 (3) ◽  
pp. 2721-2726 ◽  
Author(s):  
Gavin E. Crooks
Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 477
Author(s):  
Lee Jinwoo

Fluctuation theorems are a class of equalities that express universal properties of the probability distribution of a fluctuating path functional such as heat, work or entropy production over an ensemble of trajectories during a non-equilibrium process with a well-defined initial distribution. Jinwoo and Tanaka (Jinwoo, L.; Tanaka, H. Sci. Rep. 2015, 5, 7832) have shown that work fluctuation theorems hold even within an ensemble of paths to each state, making it clear that entropy and free energy of each microstate encode heat and work, respectively, within the conditioned set. Here we show that information that is characterized by the point-wise mutual information for each correlated state between two subsystems in a heat bath encodes the entropy production of the subsystems and heat bath during a coupling process. To this end, we extend the fluctuation theorem of information exchange (Sagawa, T.; Ueda, M. Phys. Rev. Lett. 2012, 109, 180602) by showing that the fluctuation theorem holds even within an ensemble of paths that reach a correlated state during dynamic co-evolution of two subsystems.


2013 ◽  
Vol 88 (2) ◽  
Author(s):  
Kyogo Kawaguchi ◽  
Yohei Nakayama

Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 743 ◽  
Author(s):  
Davor Juretić ◽  
Juraj Simunić ◽  
Željana Bonačić Lošić

Transitions between enzyme functional states are often connected to conformational changes involving electron or proton transport and directional movements of a group of atoms. These microscopic fluxes, resulting in entropy production, are driven by non-equilibrium concentrations of substrates and products. Maximal entropy production exists for any chosen transition, but such a maximal transitional entropy production (MTEP) requirement does not ensure an increase of total entropy production, nor an increase in catalytic performance. We examine when total entropy production increases, together with an increase in the performance of an enzyme or bioenergetic system. The applications of the MTEP theorem for transitions between functional states are described for the triosephosphate isomerase, ATP synthase, for β-lactamases, and for the photochemical cycle of bacteriorhodopsin. The rate-limiting steps can be easily identified as those which are the most efficient in dissipating free-energy gradients and in performing catalysis. The last step in the catalytic cycle is usually associated with the highest free-energy dissipation involving proton nanocurents. This recovery rate-limiting step can be optimized for higher efficiency by using corresponding MTEP requirements. We conclude that biological evolution, leading to increased optimal catalytic efficiency, also accelerated the thermodynamic evolution, the synergistic relationship we named the evolution-coupling hypothesis.


1959 ◽  
Vol 37 (6) ◽  
pp. 739-754 ◽  
Author(s):  
J. S. Kirkaldy

The principle of minimum rate of entropy production is applied to steady-state transport processes in the neighborhood of an alloy crystal face growing into its melt. The procedure gives a satisfactory rationale of observed interface morphology. It is noted that segregation, which occurs in cellular or dendritic growth of alloys, is a direct manifestation of the system's attempt to minimize entropy production by conserving free energy. The general problems of growth of pure and impure single crystals from the melt and vapor are discussed.


2018 ◽  
Author(s):  
Joseph J. Vallino ◽  
Julie A. Huber

AbstractThe maximum entropy production (MEP) conjecture posits that systems with many degrees of freedom will likely organize to maximize the rate of free energy dissipation. Previous work indicates that biological systems can outcompete abiotic systems by maximizing free energy dissipation over time by utilizing temporal strategies acquired and refined by evolution, and over space via cooperation. In this study, we develop an MEP model to describe biogeochemistry observed in Siders Pond, a phosphate limited meromictic system located in Falmouth, MA that exhibits steep chemical gradients due to density-driven stratification that supports anaerobic photosynthesis as well as microbial communities that catalyze redox cycles involving O, N, S, Fe and Mn. The MEP model uses a metabolic network to represent microbial redox reactions, where biomass allocation and reaction rates are determined by solving an optimization problem that maximizes entropy production over time and a 1D vertical profile constrained by an advection-dispersion-reaction model. We introduce a new approach for modeling phototrophy and explicitly represent aerobic photoautotrophs, anoxygenic photoheterotrophs and anaerobic photoautotrophs. The metabolic network also includes reactions for heterotrophic bacteria, sulfate reducing bacteria, sulfide oxidizing bacteria and aerobic and anaerobic grazers. Model results were compared to observations of biogeochemical constituents collected over a 24 hour period at 8 depths at a single 15 m deep station in Siders Pond. Maximizing entropy production over long (3 d) intervals produced results more similar to field observations than short (0.25 d) interval optimizations, which support the importance of temporal strategies for maximizing entropy production over time. Furthermore, we found that entropy production must be maximized locally instead of globally where energy potentials are degraded quickly by abiotic processes, such as light absorption by water. This combination of field observations with modeling results show that microbial systems in nature can be accurately described by the maximum entropy production conjecture applied over time and space.


2019 ◽  
Vol 44 (4) ◽  
pp. 363-371
Author(s):  
Shripad P. Mahulikar ◽  
Tapan K. Sengupta ◽  
Nidhi Sharma ◽  
Pallavi Rastogi

AbstractEntropy fluctuations with time occur in finite-sized time-evolving dissipative systems. There is a need to comprehend the role of these fluctuations on the fluctuations-averaged entropy generation rate, over a large enough observation time interval. In this non-equilibrium thermodynamic investigation, the Fluctuation Theorem (FT) and Principle of Least Action are re-visited to articulate their implications for dissipative systems. The Principle of Maximum Entropy Production (MaxEP: the entropy generation rate of a dissipative system is maximized by paths of least action) is conceptually identified as the Principle of Least Action for dissipative systems. A Thermodynamic Fusion Theorem that merges the FT and the MaxEP is introduced for addressing the role of fluctuations in entropy production. It identifies “entropy fluctuations” as the “least-action path” for maximizing the time-averaged entropy production in a dissipative system. The validity of this introduced theorem is demonstrated for the case of entropy fluctuations in Rayleigh–Taylor flow instability.


Sign in / Sign up

Export Citation Format

Share Document