total entropy production
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 182 (2) ◽  
Author(s):  
Oliver Niggemann ◽  
Udo Seifert

AbstractA general framework for the field-theoretic thermodynamic uncertainty relation was recently proposed and illustrated with the $$(1+1)$$ ( 1 + 1 ) dimensional Kardar–Parisi–Zhang equation. In the present paper, the analytical results obtained there in the weak coupling limit are tested via a direct numerical simulation of the KPZ equation with good agreement. The accuracy of the numerical results varies with the respective choice of discretization of the KPZ non-linearity. Whereas the numerical simulations strongly support the analytical predictions, an inherent limitation to the accuracy of the approximation to the total entropy production is found. In an analytical treatment of a generalized discretization of the KPZ non-linearity, the origin of this limitation is explained and shown to be an intrinsic property of the employed discretization scheme.


Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 743 ◽  
Author(s):  
Davor Juretić ◽  
Juraj Simunić ◽  
Željana Bonačić Lošić

Transitions between enzyme functional states are often connected to conformational changes involving electron or proton transport and directional movements of a group of atoms. These microscopic fluxes, resulting in entropy production, are driven by non-equilibrium concentrations of substrates and products. Maximal entropy production exists for any chosen transition, but such a maximal transitional entropy production (MTEP) requirement does not ensure an increase of total entropy production, nor an increase in catalytic performance. We examine when total entropy production increases, together with an increase in the performance of an enzyme or bioenergetic system. The applications of the MTEP theorem for transitions between functional states are described for the triosephosphate isomerase, ATP synthase, for β-lactamases, and for the photochemical cycle of bacteriorhodopsin. The rate-limiting steps can be easily identified as those which are the most efficient in dissipating free-energy gradients and in performing catalysis. The last step in the catalytic cycle is usually associated with the highest free-energy dissipation involving proton nanocurents. This recovery rate-limiting step can be optimized for higher efficiency by using corresponding MTEP requirements. We conclude that biological evolution, leading to increased optimal catalytic efficiency, also accelerated the thermodynamic evolution, the synergistic relationship we named the evolution-coupling hypothesis.


2019 ◽  
Vol 44 (3) ◽  
pp. 217-233 ◽  
Author(s):  
Miroslav Grmela ◽  
Michal Pavelka ◽  
Václav Klika ◽  
Bing-Yang Cao ◽  
Nie Bendian

Abstract Heat conduction is investigated on three levels: equilibrium, Fourier, and Cattaneo. The Fourier level is either the point of departure for investigating the approach to equilibrium or the final stage in the investigation of the approach from the Cattaneo level. Both investigations bring to the Fourier level an entropy and a thermodynamics. In the absence of external and internal influences preventing the approach to equilibrium the entropy that arises in the latter investigation is the production of the classical entropy that arises in the former investigation. If the approach to equilibrium is prevented, then the entropy that arises in the investigation of the approach from the Cattaneo level to the Fourier level still brings to the Fourier level the entropy and the thermodynamics even if the classical entropy and the classical thermodynamics are absent. We also note that vanishing total entropy production as a characterization of equilibrium state is insufficient.


Author(s):  
Elisa Magnanelli ◽  
Øivind Wilhelmsen ◽  
Mario Acquarone ◽  
Lars P. Folkow ◽  
Signe Kjelstrup

AbstractReindeer in the arctic region live under very harsh conditions and may face temperatures below 233 K. Therefore, efficient conservation of body heat and water is important for their survival. Alongside their insulating fur, the reindeer nasal mechanism for heat and mass exchange during respiration plays a fundamental role. We present a dynamic model to describe the heat and mass transport that takes place inside the reindeer nose, where we account for the complicated geometrical structure of the subsystems that are part of the nose. The model correctly captures the trend in experimental data for the temperature, heat and water recovery in the reindeer nose during respiration. As a reference case, we model a nose with a simple cylindrical-like geometry, where the total volume and contact area are the same as those determined in the reindeer nose. A comparison of the reindeer nose with the reference case shows that the nose geometry has a large influence on the velocity, temperature and water content of the air inside the nose. For all investigated cases, we find that the total entropy production during a breathing cycle is lower for the reindeer nose than for the reference case. The same trend is observed for the total energy consumption. The reduction in the total entropy production caused by the complicated geometry is higher (up to -20 %) at more extreme ambient conditions, when energy efficiency is presumably more important for the maintenance of energy balance in the animal. In the literature, a hypothesis has been proposed, which states that the most energy-efficient design of a system is characterized by equipartition of the entropy production. In agreement with this hypothesis, we find that the local entropy production during a breathing cycle is significantly more uniform for the reindeer nose than for the reference case. This suggests that natural selection has favored designs that give uniform entropy production when energy efficiency is an issue. Animals living in the harsh arctic climate, such as the reindeer, can therefore serve as inspiration for a novel industrial design with increased efficiency.


Author(s):  
Yingbai Xie ◽  
Kuikui Cui ◽  
Luxiang Zong ◽  
Zhichao Wang

This paper introduces a cascade refrigeration cycle that uses natural refrigerants of CO2 and NH3 at low temperature. It introduces the character of CO2 and NH3, besides analyzes the cascade refrigeration cycle. The optimal intermediate temperature of NH3/CO2 cascade refrigeration cycle is determined by the entropy production minimization method. We analyze the four processes entropy production in both CO2 cycle (LT side) and NH3 cycle (HT side) and research how the total entropy production changes in the conditions of different T0, different TCL and different ΔT. We also find that in order to enhance the efficiency of NH3/CO2 cascade refrigeration cycle, it is necessary to reduce ΔT. It can be concluded that NH3/CO2 cascade refrigeration cycle has a good future.


Sign in / Sign up

Export Citation Format

Share Document