Large deviation function for the Eden model and universality within the one-dimensional Kardar-Parisi-Zhang class

2000 ◽  
Vol 61 (2) ◽  
pp. 2092-2094 ◽  
Author(s):  
C. Appert
2012 ◽  
Vol 11 (03) ◽  
pp. 1242007 ◽  
Author(s):  
FRANCESCO TURCI ◽  
ESTELLE PITARD

In this article, we demonstrate that in a transport model of particles with kinetic constraints, long-lived spatial structures are responsible for the blocking dynamics and the decrease of the current at strong driving field. Coexistence between mobile and blocked regions can be anticipated by a first-order transition in the large deviation function for the current. By a study of the system under confinement, we are able to study finite-size effects and extract a typical length between mobile regions.


Author(s):  
Ahmed Ketata ◽  
Zied Driss ◽  
Mohamed Salah Abid

The present article attempts to describe the behavior of wastegated turbines under various steady and pulsating flow conditions. For this, meanline and one-dimensional numerical codes including appropriate modeling approaches for wastegated turbines have been developed with the FORTRAN language. These codes were validated against experiments with an established test rig at the National School of Engineers of Sfax. The discharge coefficient map of the wastegate was determined with a developed correlation built from experiments, and it was served as an input to the developed codes for interpolations during computation. This correlation is based on a two-dimensional non-linear dose-response fitting relationship instead of classical polynomial function which is one novelty of the article in addition to the one-dimensional modeling methodology. The normalized root mean square error (NRMSE) of both cycle-averaged efficiency and mass flow parameter (MFP) remains below 2% which confirms the validity of the proposed calculation approach. The results indicated a large deviation in the turbine performance under pulsating flow conditions compared to the steady state ones. The shape of the hysteresis loop of the turbine efficiency remains unchanged toward the variation of the wastegate valve angle at the same pulse frequency. The mass flow hystereses loop area is decreased by around 50% as the pulse frequency increases from 33 up to 133.33 Hz. An increase of less than 1% of the cycle-averaged efficiency has been reported when the bypass flow through the wastegate increases. The fluctuation of the efficiency is decreased by 1.5% when the wastegate valve becomes fully opened under the whole range of the pulse frequency.


Sign in / Sign up

Export Citation Format

Share Document