Analytic solutions to the shallow water equations

2005 ◽  
Vol 72 (1) ◽  
Author(s):  
R. Iacono
2011 ◽  
Vol 675 ◽  
pp. 1-26 ◽  
Author(s):  
R. ROTUNNO ◽  
J. B. KLEMP ◽  
G. H. BRYAN ◽  
D. J. MURAKI

Nearly all analytical models of lock-exchange flow are based on the shallow-water approximation. Since the latter approximation fails at the leading edges of the mutually intruding fluids of lock-exchange flow, solutions to the shallow-water equations can be obtained only through the specification of front conditions. In the present paper, analytic solutions to the shallow-water equations for non-Boussinesq lock-exchange flow are given for front conditions deriving from free-boundary arguments. Analytic solutions are also derived for other proposed front conditions – conditions which appear to the shallow-water system as forced boundary conditions. Both solutions to the shallow-water equations are compared with the numerical solutions of the Navier–Stokes equations and a mixture of successes and failures is recorded. The apparent success of some aspects of the forced solutions of the shallow-water equations, together with the fact that in a real fluid the density interface is a free boundary, shows the need for an improved theory of lock-exchange flow taking into account non-hydrostatic effects for density interfaces intersecting rigid boundaries.


Author(s):  
Xiao-Hua Zhu ◽  
Xiao-Hua Zhu ◽  
Ze-Nan Zhu ◽  
Ze-Nan Zhu ◽  
Xinyu Guo ◽  
...  

A coastal acoustic tomography (CAT) experiment for mapping the tidal currents in the Zhitouyang Bay was successfully carried out with seven acoustic stations during July 12 to 13, 2009. The horizontal distributions of tidal current in the tomography domain are calculated by the inverse analysis in which the travel time differences for sound traveling reciprocally are used as data. Spatial mean amplitude ratios M2 : M4 : M6 are 1.00 : 0.15 : 0.11. The shallow-water equations are used to analyze the generation mechanisms of M4 and M6. In the deep area, velocity amplitudes of M4 measured by CAT agree well with those of M4 predicted by the advection terms in the shallow water equations, indicating that M4 in the deep area where water depths are larger than 60 m is predominantly generated by the advection terms. M6 measured by CAT and M6 predicted by the nonlinear quadratic bottom friction terms agree well in the area where water depths are less than 20 m, indicating that friction mechanisms are predominant for generating M6 in the shallow area. Dynamic analysis of the residual currents using the tidally averaged momentum equation shows that spatial mean values of the horizontal pressure gradient due to residual sea level and of the advection of residual currents together contribute about 75% of the spatial mean values of the advection by the tidal currents, indicating that residual currents in this bay are induced mainly by the nonlinear effects of tidal currents.


2020 ◽  
Vol 35 (6) ◽  
pp. 355-366
Author(s):  
Vladimir V. Shashkin ◽  
Gordey S. Goyman

AbstractThis paper proposes the combination of matrix exponential method with the semi-Lagrangian approach for the time integration of shallow water equations on the sphere. The second order accuracy of the developed scheme is shown. Exponential semi-Lagrangian scheme in the combination with spatial approximation on the cubed-sphere grid is verified using the standard test problems for shallow water models. The developed scheme is as good as the conventional semi-implicit semi-Lagrangian scheme in accuracy of slowly varying flow component reproduction and significantly better in the reproduction of the fast inertia-gravity waves. The accuracy of inertia-gravity waves reproduction is close to that of the explicit time-integration scheme. The computational efficiency of the proposed exponential semi-Lagrangian scheme is somewhat lower than the efficiency of semi-implicit semi-Lagrangian scheme, but significantly higher than the efficiency of explicit, semi-implicit, and exponential Eulerian schemes.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2152
Author(s):  
Gonzalo García-Alén ◽  
Olalla García-Fonte ◽  
Luis Cea ◽  
Luís Pena ◽  
Jerónimo Puertas

2D models based on the shallow water equations are widely used in river hydraulics. However, these models can present deficiencies in those cases in which their intrinsic hypotheses are not fulfilled. One of these cases is in the presence of weirs. In this work we present an experimental dataset including 194 experiments in nine different weirs. The experimental data are compared to the numerical results obtained with a 2D shallow water model in order to quantify the discrepancies that exist due to the non-fulfillment of the hydrostatic pressure hypotheses. The experimental dataset presented can be used for the validation of other modelling approaches.


Sign in / Sign up

Export Citation Format

Share Document