Three-dimensional vesicles under shear flow: Numerical study of dynamics and phase diagram

2011 ◽  
Vol 83 (3) ◽  
Author(s):  
Thierry Biben ◽  
Alexander Farutin ◽  
Chaouqi Misbah
Author(s):  
Youngho Suh ◽  
Changhoon Lee

In this work, we studied the deformation behavior of a droplet under the various flow conditions. The droplet deformation is calculated by a level-set method. In order to determine the acting force on a particle in shear flow field, we propose the feedback forces which can maintain particle position with efficient handling of deformation. Computations were carried out to investigate the deformation behavior of a droplet caused by the surrounding gaseous flow and the effect of the deformation on the droplet characteristics with various dimensionless parameters. Based on the numerical results, we observed that drag and lift forces acting on a droplet depend strongly on the deformation. Also, the present method is proven to be applicable to a three-dimensional deformation of droplet in shear flow, which cannot be properly analyzed by the previous studies. The drag and lift forces obtained from the present numerical method are favorably compared with the data reported in the literature.


2011 ◽  
Vol 10 (2) ◽  
pp. 453-473 ◽  
Author(s):  
Jian-Jun Xu ◽  
Zhilin Li ◽  
John Lowengrub ◽  
Hongkai Zhao

AbstractIn this paper, we numerically investigate the effects of surfactant on drop-drop interactions in a 2D shear flow using a coupled level-set and immersed interface approach proposed in (Xu et al., J. Comput. Phys., 212 (2006), 590-616). We find that surfactant plays a critical and nontrivial role in drop-drop interactions. In particular, we find that the minimum distance between the drops is a non-monotone function of the surfactant coverage and Capillary number. This non-monotonic behavior, which does not occur for clean drops, is found to be due to the presence of Marangoni forces along the drop interfaces. This suggests that there are non-monotonic conditions for coalescence of surfactant-laden drops, as observed in recent experiments of Leal and co-workers. Although our study is two-dimensional, we believe that drop-drop interactions in three-dimensional flows should be qualitatively similar as the Maragoni forces in the near contact region in 3D should have a similar effect.


1994 ◽  
Vol 38 (6) ◽  
pp. 1829-1843 ◽  
Author(s):  
M. S. Ingber ◽  
L. A. Mondy

Author(s):  
C. Abegg ◽  
Graham de Vahl Davis ◽  
W.J. Hiller ◽  
St. Koch ◽  
Tomasz A. Kowalewski ◽  
...  

2012 ◽  
Vol 9 (1) ◽  
pp. 94-97
Author(s):  
Yu.A. Itkulova

In the present work creeping three-dimensional flows of a viscous liquid in a cylindrical tube and a channel of variable cross-section are studied. A qualitative triangulation of the surface of a cylindrical tube, a smoothed and experimental channel of a variable cross section is constructed. The problem is solved numerically using boundary element method in several modifications for a periodic and non-periodic flows. The obtained numerical results are compared with the analytical solution for the Poiseuille flow.


Sign in / Sign up

Export Citation Format

Share Document