scholarly journals Holographic measurements of anisotropic three-dimensional diffusion of colloidal clusters

2013 ◽  
Vol 88 (2) ◽  
Author(s):  
Jerome Fung ◽  
Vinothan N. Manoharan
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Chen ◽  
Xun Chen ◽  
R. Glenn Hepfer ◽  
Brooke J. Damon ◽  
Changcheng Shi ◽  
...  

AbstractDiffusion is a major molecular transport mechanism in biological systems. Quantifying direction-dependent (i.e., anisotropic) diffusion is vitally important to depicting how the three-dimensional (3D) tissue structure and composition affect the biochemical environment, and thus define tissue functions. However, a tool for noninvasively measuring the 3D anisotropic extracellular diffusion of biorelevant molecules is not yet available. Here, we present light-sheet imaging-based Fourier transform fluorescence recovery after photobleaching (LiFT-FRAP), which noninvasively determines 3D diffusion tensors of various biomolecules with diffusivities up to 51 µm2 s−1, reaching the physiological diffusivity range in most biological systems. Using cornea as an example, LiFT-FRAP reveals fundamental limitations of current invasive two-dimensional diffusion measurements, which have drawn controversial conclusions on extracellular diffusion in healthy and clinically treated tissues. Moreover, LiFT-FRAP demonstrates that tissue structural or compositional changes caused by diseases or scaffold fabrication yield direction-dependent diffusion changes. These results demonstrate LiFT-FRAP as a powerful platform technology for studying disease mechanisms, advancing clinical outcomes, and improving tissue engineering.


1987 ◽  
Vol 37 (1-2) ◽  
pp. 81-101 ◽  
Author(s):  
Camillo Dejak ◽  
Ileana Mazzei Lalatta ◽  
Marina Molin ◽  
Giovanni Pecenik

1992 ◽  
Vol 46 (6) ◽  
pp. R3016-R3019 ◽  
Author(s):  
Stefan Schwarzer ◽  
Marek Wolf ◽  
Shlomo Havlin ◽  
Paul Meakin ◽  
H. Eugene Stanley

Sign in / Sign up

Export Citation Format

Share Document