Waxing and waning of dynamical heterogeneity in the superionic state

2014 ◽  
Vol 89 (1) ◽  
Author(s):  
V. Ajay Annamareddy ◽  
Prithwish K. Nandi ◽  
Xiaojun Mei ◽  
Jacob Eapen
MRS Advances ◽  
2018 ◽  
Vol 3 (31) ◽  
pp. 1777-1781 ◽  
Author(s):  
Dillon Sanders ◽  
Jacob Eapen

ABSTRACTThe oxygen ions in the high temperature superionic state of uranium dioxide (UO2) are known to be in an arrested or jammed state, exhibiting characteristic features of jammed kinetics such as low dimensional string-like ion hopping and dynamical heterogeneity (DH). This thermally-jammed state entails a configurational entropic cost. Using atomistic simulations and the 2PT method, we compute the solid-like (vibrational) and hard sphere-like (configurational) contributions to the total entropy across a temperature range of 1500 K to 2800 K that envelop both the onset of superionic conduction (2000 K) and the second order λ-transition (2610 K). To properly account for the thermally jammed state of the ions, we use an equation of state that is appropriate for the metastable fluid branch. Our simulation results are in excellent agreement with the entropy data extracted from specific heat experiments with a mean error of less than 2%.


2005 ◽  
Vol 19 (1) ◽  
pp. 87-98 ◽  
Author(s):  
Jaeseung Jeong ◽  
Yongho Kwak ◽  
Yang In Kim ◽  
Kyoung J. Lee

2021 ◽  
Vol 66 (1) ◽  
pp. 42-48
Author(s):  
Kien Pham Huu ◽  
Linh Nguyen Hong ◽  
Hien Pham Xuan ◽  
Linh Nguyen Thi Thuy ◽  
Quang Phan Dinh ◽  
...  

In this paper, we perform a simulation about liquid GeO2. The structure and diffusion process are analyzed through the radial distribution function, the distribution of GeOx (x = 4, 5, 6) structural units, length distribution, angle distribution, and data visualization. Simulation results show that the structure of liquid GeO2 composes clusters of GeO4, GeO5, or GeO6. These clusters have sizes depending on pressure and are distributed heterogeneously in space. This result confirms the origin of dynamical heterogeneity in the liquid oxide systems. In addition, the diffusion coefficient of Ge and O decreases upon pressure. We show that the diffusion relates to the breaking bond Ge-O.


2021 ◽  
Author(s):  
Grisell Díaz Leines ◽  
Angelos Michaelides ◽  
Jutta Rogal

Gaining fundamental understanding of crystal nucleation processes in metal alloys is crucial for the development and design of high-performance materials with targeted properties. Yet, crystallizationis a complex non-equilibrium process and,...


Sign in / Sign up

Export Citation Format

Share Document