scholarly journals Dark- and bright-rogue-wave solutions for media with long-wave–short-wave resonance

2014 ◽  
Vol 89 (1) ◽  
Author(s):  
Shihua Chen ◽  
Philippe Grelu ◽  
J. M. Soto-Crespo
2013 ◽  
Vol 82 (7) ◽  
pp. 074001 ◽  
Author(s):  
Kwok Wing Chow ◽  
Hiu Ning Chan ◽  
David Jacob Kedziora ◽  
Roger Hamilton James Grimshaw

Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 958
Author(s):  
Xianguo Geng ◽  
Ruomeng Li

A vector modified Yajima–Oikawa long-wave–short-wave equation is proposed using the zero-curvature presentation. On the basis of the Riccati equations associated with the Lax pair, a method is developed to construct multi-fold classical and generalized Darboux transformations for the vector modified Yajima–Oikawa long-wave–short-wave equation. As applications of the multi-fold classical Darboux transformations and generalized Darboux transformations, various exact solutions for the vector modified long-wave–short-wave equation are obtained, including soliton, breather, and rogue wave solutions.


Author(s):  
Wei Tan ◽  
Zhao-Yang Yin

Abstract The parameter limit method on the basis of Hirota’s bilinear method is proposed to construct the rogue wave solutions for nonlinear partial differential equations (NLPDEs). Some real and complex differential equations are used as concrete examples to illustrate the effectiveness and correctness of the described method. The rogue waves and homoclinic solutions of different structures are obtained and simulated by three-dimensional graphics, respectively. More importantly, we find that rogue wave solutions and homoclinic solutions appear in pairs. That is to say, for some NLPDEs, if there is a homoclinic solution, then there must be a rogue wave solution. The twin phenomenon of rogue wave solutions and homoclinic solutions of a class of NLPDEs is discussed.


2018 ◽  
Vol 3 (12) ◽  
Author(s):  
H. N. Chan ◽  
R. H. J. Grimshaw ◽  
K. W. Chow

Author(s):  
Huanhuan Lu ◽  
Yufeng Zhang

AbstractIn this paper, we analyse two types of rogue wave solutions generated from two improved ansatzs, to the (2 + 1)-dimensional generalized Korteweg–de Vries equation. With symbolic computation, the first-order rogue waves, second-order rogue waves, third-order rogue waves are generated directly from the first ansatz. Based on the Hirota bilinear formulation, another type of one-rogue waves and two-rogue waves can be obtained from the second ansatz. In addition, the dynamic behaviours of obtained rogue wave solutions are illustrated graphically.


Sign in / Sign up

Export Citation Format

Share Document