scholarly journals Direct simulation of phase delay effects on induced-charge electro-osmosis under large ac electric fields

2016 ◽  
Vol 94 (2) ◽  
Author(s):  
Hideyuki Sugioka
Author(s):  
Cetin Canpolat

Induced-charge electro-osmosis around multiple gold-coated stainless steel rods under various AC electric fields is investigated using the techniques of microparticle image velocimetry and numerical simulation. In this study, the results of interactions between induced electric double layers of two identical conductive cylinders on surrounding fluid are presented. The induced-charge electro-osmosis flow around multiple rods in touch and with one cylinder diameter gap reveals quadrupolar flow structures with four vortices. The induced-charge electro-osmotic flow structure and velocity magnitude also depend on the cylinder geometry and orientation. It is seen that four small vortices develop in the close region of cylinder surface for multiple rods with gap, while the other four large vortices are surrounding them. The distributions of vorticity patterns also strongly depend on cylinder orientation in the close region of cylinder surface.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 259
Author(s):  
Jose Eladio Flores-Mena ◽  
Pablo García-Sánchez ◽  
Antonio Ramos

We study theoretically and numerically the electrokinetic behavior of metal microparticles immersed in aqueous electrolytes. We consider small particles subjected to non-homogeneous ac electric fields and we describe their motion as arising from the combination of electrical forces (dielectrophoresis) and the electroosmotic flows on the particle surface (induced-charge electrophoresis). The net particle motion is known as dipolophoresis. We also study the particle motion induced by travelling electric fields. We find analytical expressions for the dielectrophoresis and induced-charge electrophoresis of metal spheres and we compare them with numerical solutions. This validates our numerical method, which we also use to study the dipolophoresis of metal cylinders.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Cetin Canpolat ◽  
Mingkan Zhang ◽  
William Rosen ◽  
Shizhi Qian ◽  
Ali Beskok

Induced-charge electroosmosis (ICEO) around multiple gold-coated stainless steel rods under different ac electric fields is analyzed using microparticle image velocimetry (micro-PIV) and numerical simulations. In the present investigation, the induced electric double layer (EDL) is in weakly nonlinear limit. The ICEO flow around multiple touching rods exhibits geometry dependent quadrupolar flow structures with four vortices. The velocity magnitude is proportional to the square of the electric field. The ICEO flow velocity also depends on the cylinder orientation. The velocity increases with increased radial distance from the rod’s surface, attains a maximum, and then decays to zero. Experimental and numerical velocity distributions have the same trend beyond 0.2 mm of the rod’s surface.


Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 447 ◽  
Author(s):  
Kai Du ◽  
Jingni Song ◽  
Weiyu Liu ◽  
Ye Tao ◽  
Yukun Ren

We present herein a unique concept of multifrequency induced-charge electroosmosis (MICEO) actuated directly on driving electrode arrays, for highly-efficient simultaneous transport and convective mixing of fluidic samples in microscale ducts. MICEO delicately combines transversal AC electroosmotic vortex flow, and axial traveling-wave electroosmotic pump motion under external dual-Fourier-mode AC electric fields. The synthetic flow field associated with MICEO is mathematically analyzed under thin layer limit, and the particle tracing experiment with a special powering technique validates the effectiveness of this physical phenomenon. Meanwhile, the simulation results with a full-scale 3D computation model demonstrate its robust dual-functionality in inducing fully-automated analyte transport and chaotic stirring in a straight fluidic channel embedding double-sided quarter-phase discrete electrode arrays. Our physical demonstration with multifrequency signal control on nonlinear electroosmosis provides invaluable references for innovative designs of multifunctional on-chip analytical platforms in modern microfluidic systems.


Author(s):  
Huicheng Feng ◽  
Lingqi Zhao ◽  
Xin Zhong ◽  
Xingfeng Lei ◽  
Teck Neng Wong

Author(s):  
Xinghua Su ◽  
Mengying Fu ◽  
Gai An ◽  
Zhihua Jiao ◽  
Qiang Tian ◽  
...  

2004 ◽  
Author(s):  
M. Sigurdson ◽  
C. Meinhart ◽  
D. Wang

We develop here tools for speeding up binding in a biosensor device through augmenting diffusive transport, applicable to immunoassays as well as DNA hybridization, and to a variety of formats, from microfluidic to microarray. AC electric fields generate the fluid motion through the well documented but unexploited phenomenon, Electrothermal Flow, where the circulating flow redirects or stirs the fluid, providing more binding opportunities between suspended and wall-immobilized molecules. Numerical simulations predict a factor of up to 8 increase in binding rate for an immunoassay under reasonable conditions. Preliminary experiments show qualitatively higher binding after 15 minutes. In certain applications, dielectrophoretic capture of passing molecules, when combined with electrothermal flow, can increase local analyte concentration and further enhance binding.


2014 ◽  
Vol 89 (1) ◽  
Author(s):  
Alicia Boymelgreen ◽  
Gilad Yossifon ◽  
Sinwook Park ◽  
Touvia Miloh

Sign in / Sign up

Export Citation Format

Share Document