scholarly journals Model-Independent Test for Scale-Dependent Non-Gaussianities in the Cosmic Microwave Background

2009 ◽  
Vol 102 (13) ◽  
Author(s):  
C. Räth ◽  
G. E. Morfill ◽  
G. Rossmanith ◽  
A. J. Banday ◽  
K. M. Górski
2019 ◽  
Vol 489 (2) ◽  
pp. 2669-2676 ◽  
Author(s):  
Charlotte A Mason ◽  
Rohan P Naidu ◽  
Sandro Tacchella ◽  
Joel Leja

ABSTRACT Modelling reionization often requires significant assumptions about the properties of ionizing sources. Here, we infer the total output of hydrogen-ionizing photons (the ionizing emissivity, $\dot{N}_\textrm {ion}$) at z = 4–14 from current reionization constraints, being maximally agnostic to the properties of ionizing sources. We use a Bayesian analysis to fit for a non-parametric form of $\dot{N}_\textrm {ion}$, allowing us to flexibly explore the entire prior volume. We infer a declining $\dot{N}_\textrm {ion}$ with redshift at z > 6, which can be used as a benchmark for reionization models. Model-independent reionization constraints from the cosmic microwave background (CMB) optical depth and Ly α and Ly β forest dark pixel fraction produce $\dot{N}_\textrm {ion}$ evolution ($\mathrm{ d}\log _{10}\dot{\mathbf {N}}_{\bf ion}/\mathrm{ d}z|_{z=6\rightarrow 8} = -0.31\pm 0.35$ dex) consistent with the declining UV luminosity density of galaxies, assuming constant ionizing photon escape fraction and efficiency. Including measurements from Ly α damping of galaxies and quasars produces a more rapid decline: $\mathrm{ d}\log _{10}\dot{\mathbf {N}}_{\bf ion}/\mathrm{ d}z|_{z=6\rightarrow 8} =-0.44\pm 0.22$ dex, steeper than the declining galaxy luminosity density (if extrapolated beyond $M_\rm{\small UV}\gtrsim -13$), and constrains the mid-point of reionization to z = 6.93 ± 0.14.


2010 ◽  
Vol 2010 ◽  
pp. 1-25 ◽  
Author(s):  
L. Raul Abramo ◽  
Thiago S. Pereira

We review the basic hypotheses which motivate the statistical framework used to analyze the cosmic microwave background, and how that framework can be enlarged as we relax those hypotheses. In particular, we try to separate as much as possible the questions of gaussianity, homogeneity, and isotropy from each other. We focus both on isotropic estimators of nongaussianity as well as statistically anisotropic estimators of gaussianity, giving particular emphasis on their signatures and the enhanced “cosmic variances” that become increasingly important as our putative Universe becomes less symmetric. After reviewing the formalism behind some simple model-independent tests, we discuss how these tests can be applied to CMB data when searching for large-scale “anomalies”.


2020 ◽  
Vol 499 (4) ◽  
pp. 5653-5655
Author(s):  
Gianfranco De Zotti ◽  
Matteo Bonato

ABSTRACT The cosmic microwave background (CMB) spectrum provides tight constraints on the thermal history of the universe up to z ∼ 2 × 106. At higher redshifts, thermalization processes become very efficient so that even large energy releases do not leave visible imprints in the CMB spectrum. In this paper, we show that the consistency between the accurate determinations of the specific entropy at primordial nucleosynthesis and at the electron–photon decoupling implies that no more than 7.8 per cent of the present-day CMB energy density could have been released in the post-nucleosynthesis era. As pointed out by previous studies, primordial nucleosynthesis complements model independent constraints provided by the CMB spectrum, extending them by two orders of magnitude in redshift.


1997 ◽  
Vol 483 (1) ◽  
pp. 38-50 ◽  
Author(s):  
R. Bruce Partridge ◽  
Eric A. Richards ◽  
Edward B. Fomalont ◽  
K. I. Kellerman ◽  
Rogier A. Windhorst

2011 ◽  
Vol 526 ◽  
pp. L7 ◽  
Author(s):  
P. Noterdaeme ◽  
P. Petitjean ◽  
R. Srianand ◽  
C. Ledoux ◽  
S. López

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koustav Konar ◽  
Kingshuk Bose ◽  
R. K. Paul

AbstractBlackbody radiation inversion is a mathematical process for the determination of probability distribution of temperature from measured radiated power spectrum. In this paper a simple and stable blackbody radiation inversion is achieved by using an analytical function with three determinable parameters for temperature distribution. This inversion technique is used to invert the blackbody radiation field of the cosmic microwave background, the remnant radiation of the hot big bang, to infer the temperature distribution of the generating medium. The salient features of this distribution are investigated and analysis of this distribution predicts the presence of distortion in the cosmic microwave background spectrum.


Sign in / Sign up

Export Citation Format

Share Document