scholarly journals New Parity-Violating Muonic Forces and the Proton Charge Radius

2011 ◽  
Vol 107 (1) ◽  
Author(s):  
Brian Batell ◽  
David McKeen ◽  
Maxim Pospelov
Nature ◽  
2019 ◽  
Vol 575 (7781) ◽  
pp. 147-150 ◽  
Author(s):  
W. Xiong ◽  
A. Gasparian ◽  
H. Gao ◽  
D. Dutta ◽  
M. Khandaker ◽  
...  

2007 ◽  
Vol 59 (1) ◽  
pp. 358-360
Author(s):  
S. Rathi ◽  
I. Pysmenetska ◽  
P. von Neumann-Cosel ◽  
A. Richter ◽  
G. Schrieder ◽  
...  

2019 ◽  
Author(s):  
Nassim Haramein

We consider the latest results of the measurement of the charge radius of the proton utilizing laser spectroscopy of muonic hydrogen published in Science on January 25, 2013 by an international team lead by Aldo Antognini and carried out at the Paul Scherrer Institute Proton Accelerator. Given the new charge radius measurement, we compute the proton mass utilizing our generalized holographic approach and find that our result is now within 0.00072x10e-24 g of the 2010-CODATA value of the proton rest mass. Our predicted charge radius is now within 0.00036x10e-13 cm and remains within one standard deviation of the new measurement.


2005 ◽  
Vol 83 (4) ◽  
pp. 339-349 ◽  
Author(s):  
R Pohl ◽  
A Antognini ◽  
F D Amaro ◽  
F Biraben ◽  
J MR Cardoso ◽  
...  

The charge radius of the proton, the simplest nucleus, is known from electron-scattering experiments only with a surprisingly low precision of about 2%. The poor knowledge of the proton charge radius restricts tests of bound-state quantum electrodynamics (QED) to the precision level of about 6 × 10–6, although the experimental data themselves (1S Lamb shift in hydrogen) have reached a precision of 2 × 10–6. The determination of the proton charge radius with an accuracy of 10–3 is the main goal of our experiment, opening a way to check bound-state QED predictions to a level of 10–7. The principle is to measure the 2S–2P energy difference in muonic hydrogen (µ–p) by infrared laser spectroscopy. The first data were taken in the second half of 2003. Muons from our unique very-low-energy muon beam are stopped at a rate of ~100 s–1 in 0.6 mbar H2 gas where the lifetime of the formed µp(2S) atoms is about 1.3 µs. An incoming muon triggers a pulsed multistage laser system that delivers ~0.2 mJ at λ ≈ 6 µm. Following the laser excitation µp(2S) → µp(2P) we observe the 1.9 keV X-rays from 2P–1S transitions using large area avalanche photodiodes. The resonance frequency, and, hence, the Lamb shift and the proton radius, is determined by measuring the intensity of these X-rays as a function of the laser wavelength. A broad range of laser frequencies was scanned in 2003 and the analysis is currently under way. PACS Nos.: 36.10.Dr, 14.20.Dh, 42.62.Fi


2007 ◽  
Vol 85 (5) ◽  
pp. 469-478 ◽  
Author(s):  
T Nebel ◽  
F D Amaro ◽  
A Antognini ◽  
F Biraben ◽  
J MR Cardoso ◽  
...  

The Lamb-shift experiment in muonic hydrogen (μ– p) aims to measure the energy difference between the [Formula: see text] atomic levels to a precision of 30 ppm. This would allow the r.m.s. proton charge radius rp to be deduced to a precision of 10–3 and open a way to check bound-state quantum electrodynamics (QED) to a level of 10–7. The poor knowledge of the proton charge radius restricts tests of bound-state QED to the precision level of about 6 × 10–6, although the experimental data themselves (Lamb-shift in hydrogen) have reached a precision of  × 10–6. Values for rp not depending on bound-state QED results from electron scattering experiments have a surprisingly large uncertainty of 2%. In our Lamb-shift experiment, low-energy negative muons are stopped in low-density hydrogen gas, where, following the μ– atomic capture and cascade, 1% of the muonic hydrogen atoms form the metastable 2S state with a lifetime of about 1 μs. A laser pulse at λ ≈ 6 μm is used to drive the 2S → 2P transition. Following the laser excitation, we observe the 1.9 keV X-ray being emitted during the subsequent de-excitation to the 1S state using large-area avalanche photodiodes. The resonance frequency and, hence, the Lamb shift and the proton charge radius are determined by measuring the intensity of the X-ray fluorescence as a function of the laser wavelength. The results of the run in December 2003 were negative but, nevertheless, promising. One by-product of the 2003 run was the first observation of the short-lived 2S component in muonic hydrogen. Currently, improvements in the laser-system, the experimental apparatus, and the data acquisition are being implemented. PACS Nos.: 36.10.Dr, 14.20.Dh, 42.62.Fi


2018 ◽  
Vol 120 (18) ◽  
Author(s):  
Hélène Fleurbaey ◽  
Sandrine Galtier ◽  
Simon Thomas ◽  
Marie Bonnaud ◽  
Lucile Julien ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document