shift experiment
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 3)

H-INDEX

14
(FIVE YEARS 1)

2020 ◽  
Author(s):  
Anna Kosovicheva ◽  
Peter J. Bex

The binocular coordination of eye movements in a three-dimensional environment involves a combination of saccade and vergence movements. To maintain binocular accuracy and control in the face of sensory and motor changes (that occur with e.g. normal aging, surgery, corrective lenses), the oculomotor system must adapt in response to manifest visual errors. This may be achieved through a combination of binocular and monocular mechanisms, including the recalibration of saccade and vergence amplitudes in response to different visual errors induced in each eye (Maiello, Harrison, & Bex, 2016). This work has used a double-step paradigm to recalibrate eye movements in response to visual errors produced by dichoptic target steps (e.g., leftward in the left eye and rightward in the right eye). Here, we evaluated the immediate perceptual effects of this adaptation. Experiment 1 measured localization errors following adaptation, by comparing the apparent locations of pre- and post- saccadic probes. Consistent with previous work showing localization errors following saccadic adaptation, our results demonstrated that adaptation to a dichoptic step produces different localization errors in the two eyes. Furthermore, in Experiment 2, this effect was reduced for a vergence shift in the absence of a saccade, indicating that saccade programming is responsible for a large component of this illusory shift. Experiment 3 measured post-saccadic stereopsis thresholds and indicated that, unlike localization judgments, adaptation did not influence stereoacuity. Together, these results demonstrate novel dichoptic visual errors following oculomotor adaptation, and point to monocular and binocular mechanisms involved in the maintenance of binocular coordination.


2019 ◽  
Vol 18 ◽  
pp. 169
Author(s):  
S. F. Ashley ◽  
... Et al.

Lifetimes of the excited states in the yrast band of 102Pd have been deter- mined using the Recoil-Distance Doppler Shift experiment at INFN, Labo- ratori Nazionali di Legnaro. Excited states in 102Pd were populated by the 92Zr(13C,3n)102Pd fusion-evaporation reaction. Lifetimes were deduced using the Differential Decay Curve method and the corresponding B(E2) values were compared to the E(5) critical-point symmetry, and also the U(5) and O(6) limits of the Interacting Boson Model-1. It is evident that 102Pd agrees poorly with the predicted E(5) symmetry but has a very good (and somewhat surprising) agreement with the O(6) limit.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401882121 ◽  
Author(s):  
Bo Li ◽  
Shaoyi Bei

In this article, a novel rollover prediction algorithm is developed for application on vehicles with large lateral velocity and high center of gravity. Lateral energy is the direct cause of rollover. Rollover prediction model is proposed by taking full account of the impact of the pavement, tire, and suspension and realizes the estimation of the vehicle lateral energy. By calculating the ratio of real-time lateral energy reserve and rollover threshold, the degree of rollover risk is obtained. The double-shift experiment and the Fishhook experiment are performed to verify the accuracy and suitability of the proposed model, and the proposed prediction is 0.2 s ahead of the actual liftoff situation and 0.45 s ahead of the actual rollover situation; therefore, the proposed rollover model can be regarded as an effective method.


2015 ◽  
Vol 370 (1675) ◽  
pp. 20140297 ◽  
Author(s):  
Britt Koskella ◽  
Nicole Parr

Insight to the spatial and temporal scales of coevolution is key to predicting the outcome of host–parasite interactions and spread of disease. For bacteria infecting long-lived hosts, selection to overcome host defences is just one factor shaping the course of evolution; populations will also be competing with other microbial species and will themselves be facing infection by bacteriophage viruses. Here, we examine the temporal and spatial patterns of bacterial adaptation against natural phage populations from within leaves of horse chestnut trees. Using a time-shift experiment with both sympatric and allopatric phages from either contemporary or earlier points in the season, we demonstrate that bacterial resistance is higher against phages from the past, regardless of spatial sympatry or how much earlier in the season phages were collected. Similarly, we show that future bacterial hosts are more resistant to both sympatric and allopatric phages than contemporary bacterial hosts. Together, our results suggest the evolution of relatively general bacterial resistance against phages in nature and are contrasting to previously observed patterns of phage adaptation to bacteria from the same tree hosts over the same time frame, indicating a potential asymmetry in coevolutionary dynamics.


2015 ◽  
Vol 613 ◽  
pp. 012005 ◽  
Author(s):  
A A Akhmadeev ◽  
R Kh Gainutdinov ◽  
G Hermann ◽  
M A Khamadeev ◽  
O V Steryakov ◽  
...  

2013 ◽  
Vol 6 (3) ◽  
pp. 385-394 ◽  
Author(s):  
David A. Seekell ◽  
Timothy J. Cline ◽  
Stephen R. Carpenter ◽  
Michael L. Pace

2012 ◽  
Vol 5 (5) ◽  
Author(s):  
Heinz-Werner Priess ◽  
Sabine Born ◽  
Ulrich Ansorge

Inhibition of return (IOR) is the faster selection of hitherto unattended than previously attended positions. Some previous studies failed to find evidence for IOR after attention capture by color singletons. Others, however, did report IOR effects after color singletons. The current study examines the role of cue relevance for obtaining IOR effects. By using a potentially more sensitive method – saccadic IOR – we tested and found IOR after relevant color singleton cues that required an attention shift (Experiment 1). In contrast, irrelevant color singletons failed to produce reliable IOR effects in Experiment 2. Also, Experiment 2 rules out an alternative explanation of our IOR findings in terms of masking. We discuss our results in light of pertaining theories of IOR.


Sign in / Sign up

Export Citation Format

Share Document