scholarly journals Irreversible Work and Inner Friction in Quantum Thermodynamic Processes

2014 ◽  
Vol 113 (26) ◽  
Author(s):  
F. Plastina ◽  
A. Alecce ◽  
T. J. G. Apollaro ◽  
G. Falcone ◽  
G. Francica ◽  
...  
2018 ◽  
Vol 27 (6) ◽  
pp. 060502 ◽  
Author(s):  
Shanhe Su ◽  
Jinfu Chen ◽  
Yuhan Ma ◽  
Jincan Chen ◽  
Changpu Sun

2007 ◽  
Vol 151 (1) ◽  
pp. 167-180 ◽  
Author(s):  
T. Jahnke ◽  
J. Birjukov ◽  
G. Mahler

Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1076 ◽  
Author(s):  
Paolo Abiuso ◽  
Harry J. D. Miller ◽  
Martí Perarnau-Llobet ◽  
Matteo Scandi

Differential geometry offers a powerful framework for optimising and characterising finite-time thermodynamic processes, both classical and quantum. Here, we start by a pedagogical introduction to the notion of thermodynamic length. We review and connect different frameworks where it emerges in the quantum regime: adiabatically driven closed systems, time-dependent Lindblad master equations, and discrete processes. A geometric lower bound on entropy production in finite-time is then presented, which represents a quantum generalisation of the original classical bound. Following this, we review and develop some general principles for the optimisation of thermodynamic processes in the linear-response regime. These include constant speed of control variation according to the thermodynamic metric, absence of quantum coherence, and optimality of small cycles around the point of maximal ratio between heat capacity and relaxation time for Carnot engines.


2018 ◽  
Vol 8 (1) ◽  
pp. 25 ◽  
Author(s):  
Deny Pra Setyo ◽  
Eny Latifah ◽  
Arif Hidayat ◽  
Hari Wisodo

The quantum Diesel of a single fermion in 1D box system has been explored. The Fermion particle meets the Dirac's relativistic Hamiltonian with a chosen mass worth zero. This Relativistic Diesel engine research aims to obtain Diesel engine efficiency that utilizes massless fermion particles as a working substance. This study implements a modified analogy model of the classical analogue model to quantum with the implementation of the first law of thermodynamics for quantum systems so that quantum thermodynamic processes can be defined explicitly. The exploratory results of a single quantum fermion Diesel engine of a single massless system are efficiency formulation that is suitable for the efficiency of a classic Diesel engine, but its heat capacity ratio is unique, that is 2. Based on the value of heat capacity ratio, the efficiency is higher than the classical.


Author(s):  
Jochen Rau

Thermodynamic processes involve energy exchanges in the forms of work, heat, or particles. Such exchanges might be reversible or irreversible, and they might be controlled by barriers or reservoirs. A cyclic process takes a system through several states and eventually back to its initial state; it may convert heat into work (engine) or vice versa (heat pump). This chapter defines work and heat mathematically and investigates their respective properties, in particular their impact on entropy. It discusses the roles of barriers and reservoirs and introduces cyclic processes. Basic constraints imposed by the laws of thermodynamics are considered, in particular on the efficiency of a heat engine. The chapter also introduces the thermodynamic potentials: free energy, enthalpy, free enthalpy, and grand potential. These are used to describe energy exchanges and equilibrium in the presence of reservoirs. Finally, this chapter considers thermodynamic coefficients which characterize the response of a system to heating, compression, and other external actions.


Author(s):  
Shining Chan ◽  
Huoxing Liu ◽  
Fei Xing

A wave rotor enhances the performance of a gas turbine with its internal compression and expansion, yet the thermodynamic efficiency estimation has been troubling because the efficiency definition is unclear. This paper put forward three new thermodynamic efficiency definitions to overcome the trouble: the adiabatic efficiency, the weighted-pressure mixed efficiency, and the pressure pre-equilibrated efficiency. They were all derived from multistream control volumes. As a consequence, they could correct the efficiency values and make the values for compression and expansion independent. Moreover, the latter two incorporated new models of pre-equilibration inside a control volume, and modified the hypothetical “ideal” thermodynamic processes. Parametric analyses based on practical wave rotor data demonstrated that the trends of those efficiency values reflected the energy losses in wave rotors. Essentially, different thermodynamic efficiency definitions indicated different ideal thermal cycle that an optimal wave rotor can provide for a gas turbine, and they were recommended to application based on that essence.


Sign in / Sign up

Export Citation Format

Share Document