scholarly journals Polynomial-Time Classical Simulation of Quantum Ferromagnets

2017 ◽  
Vol 119 (10) ◽  
Author(s):  
Sergey Bravyi ◽  
David Gosset
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wojciech Roga ◽  
Masahiro Takeoka

Abstract Boson sampling can simulate physical problems for which classical simulations are inefficient. However, not all problems simulated by boson sampling are classically intractable. We show explicit classical methods of finding boson sampling distributions when they are known to be highly sparse. In the methods, we first determine a few distributions from restricted number of detectors and then recover the full one using compressive sensing techniques. In general, the latter step could be of high complexity. However, we show that this problem can be reduced to solving an Ising model which under certain conditions can be done in polynomial time. Various extensions are discussed including a version involving quantum annealing. Hence, our results impact the understanding of the class of classically calculable problems. We indicate that boson samplers may be advantageous in dealing with problems which are not highly sparse. Finally, we suggest a hybrid method for problems of intermediate sparsity.


2018 ◽  
Vol 60 (2) ◽  
pp. 360-375
Author(s):  
A. V. Vasil'ev ◽  
D. V. Churikov

10.29007/v68w ◽  
2018 ◽  
Author(s):  
Ying Zhu ◽  
Mirek Truszczynski

We study the problem of learning the importance of preferences in preference profiles in two important cases: when individual preferences are aggregated by the ranked Pareto rule, and when they are aggregated by positional scoring rules. For the ranked Pareto rule, we provide a polynomial-time algorithm that finds a ranking of preferences such that the ranked profile correctly decides all the examples, whenever such a ranking exists. We also show that the problem to learn a ranking maximizing the number of correctly decided examples (also under the ranked Pareto rule) is NP-hard. We obtain similar results for the case of weighted profiles when positional scoring rules are used for aggregation.


Author(s):  
Yishay Mor ◽  
Claudia V. Goldman ◽  
Jeffrey S. Rosenschein
Keyword(s):  

1986 ◽  
Vol 9 (3) ◽  
pp. 323-342
Author(s):  
Joseph Y.-T. Leung ◽  
Burkhard Monien

We consider the computational complexity of finding an optimal deadlock recovery. It is known that for an arbitrary number of resource types the problem is NP-hard even when the total cost of deadlocked jobs and the total number of resource units are “small” relative to the number of deadlocked jobs. It is also known that for one resource type the problem is NP-hard when the total cost of deadlocked jobs and the total number of resource units are “large” relative to the number of deadlocked jobs. In this paper we show that for one resource type the problem is solvable in polynomial time when the total cost of deadlocked jobs or the total number of resource units is “small” relative to the number of deadlocked jobs. For fixed m ⩾ 2 resource types, we show that the problem is solvable in polynomial time when the total number of resource units is “small” relative to the number of deadlocked jobs. On the other hand, when the total number of resource units is “large”, the problem becomes NP-hard even when the total cost of deadlocked jobs is “small” relative to the number of deadlocked jobs. The results in the paper, together with previous known ones, give a complete delineation of the complexity of this problem under various assumptions of the input parameters.


Sign in / Sign up

Export Citation Format

Share Document