scholarly journals A Polynomial-Time Algorithm for Minimizing the Deep Coalescence Cost for Level-1 Species Networks

Author(s):  
Matthew Lemay ◽  
Ran Libeskind-Hadas ◽  
Yi-Chieh Wu
2020 ◽  
Author(s):  
Matthew LeMay ◽  
Ran Libeskind-Hadas ◽  
Yi-Chieh Wu

Phylogenetic analyses commonly assume that the species history can be represented as a tree. However, in the presence of hybridization, the species history is more accurately captured as a network. Despite several advances in modeling phylogenetic networks, there is no known polynomial-time algorithm for parsimoniously reconciling gene trees with species networks while accounting for incomplete lineage sorting. To address this issue, we present a polynomial-time algorithm for the case of level-1 networks, in which no hybrid species is the direct ancestor of another hybrid species. This work enables more efficient reconciliation of gene trees with species networks, which in turn, enables more efficient reconstruction of species networks.


10.29007/v68w ◽  
2018 ◽  
Author(s):  
Ying Zhu ◽  
Mirek Truszczynski

We study the problem of learning the importance of preferences in preference profiles in two important cases: when individual preferences are aggregated by the ranked Pareto rule, and when they are aggregated by positional scoring rules. For the ranked Pareto rule, we provide a polynomial-time algorithm that finds a ranking of preferences such that the ranked profile correctly decides all the examples, whenever such a ranking exists. We also show that the problem to learn a ranking maximizing the number of correctly decided examples (also under the ranked Pareto rule) is NP-hard. We obtain similar results for the case of weighted profiles when positional scoring rules are used for aggregation.


2002 ◽  
Vol 50 (8) ◽  
pp. 1935-1941 ◽  
Author(s):  
Dongning Li ◽  
Yong Ching Lim ◽  
Yong Lian ◽  
Jianjian Song

Sign in / Sign up

Export Citation Format

Share Document