scholarly journals Baryon as a Quantum Hall Droplet and the Quark-Hadron Duality

2019 ◽  
Vol 123 (17) ◽  
Author(s):  
Yong-Liang Ma ◽  
Maciej A. Nowak ◽  
Mannque Rho ◽  
Ismail Zahed
Keyword(s):  
Author(s):  
Sandip Tiwari

Unique nanoscale phenomena arise in quantum and mesoscale properties and there are additional intriguing twists from effects that are classical in origin. In this chapter, these are brought forth through an exploration of quantum computation with the important notions of superposition, entanglement, non-locality, cryptography and secure communication. The quantum mesoscale and implications of nonlocality of potential are discussed through Aharonov-Bohm effect, the quantum Hall effect in its various forms including spin, and these are unified through a topological discussion. Single electron effect as a classical phenomenon with Coulomb blockade including in multiple dot systems where charge stability diagrams may be drawn as phase diagram is discussed, and is also extended to explore the even-odd and Kondo consequences for quantum-dot transport. This brings up the self-energy discussion important to nanoscale device understanding.


Nature ◽  
2019 ◽  
Vol 572 (7767) ◽  
pp. 91-94 ◽  
Author(s):  
Patrick Knüppel ◽  
Sylvain Ravets ◽  
Martin Kroner ◽  
Stefan Fält ◽  
Werner Wegscheider ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Yi Yang ◽  
Bo Zhen ◽  
John D. Joannopoulos ◽  
Marin Soljačić

Abstract The Hofstadter model, well known for its fractal butterfly spectrum, describes two-dimensional electrons under a perpendicular magnetic field, which gives rise to the integer quantum Hall effect. Inspired by the real-space building blocks of non-Abelian gauge fields from a recent experiment, we introduce and theoretically study two non-Abelian generalizations of the Hofstadter model. Each model describes two pairs of Hofstadter butterflies that are spin–orbit coupled. In contrast to the original Hofstadter model that can be equivalently studied in the Landau and symmetric gauges, the corresponding non-Abelian generalizations exhibit distinct spectra due to the non-commutativity of the gauge fields. We derive the genuine (necessary and sufficient) non-Abelian condition for the two models from the commutativity of their arbitrary loop operators. At zero energy, the models are gapless and host Weyl and Dirac points protected by internal and crystalline symmetries. Double (8-fold), triple (12-fold), and quadrupole (16-fold) Dirac points also emerge, especially under equal hopping phases of the non-Abelian potentials. At other fillings, the gapped phases of the models give rise to topological insulators. We conclude by discussing possible schemes for experimental realization of the models on photonic platforms.


1991 ◽  
Vol 44 (8) ◽  
pp. 4006-4009 ◽  
Author(s):  
B. B. Goldberg ◽  
D. Heiman ◽  
M. Dahl ◽  
A. Pinczuk ◽  
L. Pfeiffer ◽  
...  

1998 ◽  
Vol 2 (1-4) ◽  
pp. 523-526
Author(s):  
M.V Budantsev ◽  
Z.D Kvon ◽  
A.G Pogosov ◽  
E.B Olshanetskii ◽  
D.K Maude ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document