Suppression of Cross-Field Turbulent Transport of Passive Scalar Concentration in Two Dimensional Magnetohydrodynamics

1997 ◽  
Vol 78 (17) ◽  
pp. 3306-3309 ◽  
Author(s):  
P. H. Diamond ◽  
A. V. Gruzinov
2009 ◽  
Vol 624 ◽  
pp. 151-158 ◽  
Author(s):  
G. BOFFETTA ◽  
F. DE LILLO ◽  
A. MAZZINO

Mixing of a passive scalar in the peripheral region close to a wall is investigated by means of accurate direct numerical simulations of both a three-dimensional Couette channel flow at low Reynolds numbers and a two-dimensional synthetic flow. In both cases, the resulting phenomenology can be understood in terms of the theory recently developed by Lebedev & Turitsyn (Phys. Rev. E, vol. 69, 2004, 036301). Our results prove the robustness of the identified mechanisms responsible for the persistency of scalar concentration close to the wall with important consequences in completely different fields ranging from microfluidic applications to environmental dispersion modelling.


2002 ◽  
Vol 469 ◽  
pp. 13-48 ◽  
Author(s):  
K. S. SMITH ◽  
G. BOCCALETTI ◽  
C. C. HENNING ◽  
I. MARINOV ◽  
C. Y. TAM ◽  
...  

Motivated in part by the problem of large-scale lateral turbulent heat transport in the Earth's atmosphere and oceans, and in part by the problem of turbulent transport itself, we seek to better understand the transport of a passive tracer advected by various types of fully developed two-dimensional turbulence. The types of turbulence considered correspond to various relationships between the streamfunction and the advected field. Each type of turbulence considered possesses two quadratic invariants and each can develop an inverse cascade. These cascades can be modified or halted, for example, by friction, a background vorticity gradient or a mean temperature gradient. We focus on three physically realizable cases: classical two-dimensional turbulence, surface quasi-geostrophic turbulence, and shallow-water quasi-geostrophic turbulence at scales large compared to the radius of deformation. In each model we assume that tracer variance is maintained by a large-scale mean tracer gradient while turbulent energy is produced at small scales via random forcing, and dissipated by linear drag. We predict the spectral shapes, eddy scales and equilibrated energies resulting from the inverse cascades, and use the expected velocity and length scales to predict integrated tracer fluxes.When linear drag halts the cascade, the resulting diffusivities are decreasing functions of the drag coefficient, but with different dependences for each case. When β is significant, we find a clear distinction between the tracer mixing scale, which depends on β but is nearly independent of drag, and the energy-containing (or jet) scale, set by a combination of the drag coefficient and β. Our predictions are tested via high- resolution spectral simulations. We find in all cases that the passive scalar is diffused down-gradient with a diffusion coefficient that is well-predicted from estimates of mixing length and velocity scale obtained from turbulence phenomenology.


1985 ◽  
Vol 161 (-1) ◽  
pp. 77 ◽  
Author(s):  
Marcel Lesieur ◽  
Jackson Herring

2001 ◽  
Vol 86 (26) ◽  
pp. 5890-5893 ◽  
Author(s):  
Jané Kondev ◽  
Greg Huber

Author(s):  
T. Houra ◽  
Y. Nagano ◽  
M. Tagawa

We measure flow and thermal fields over a locally heated two-dimensional hill. The heated sections on the wall are divided into upstream and downstream portions of the hill model. These sections are heated independently, yielding various thermal boundary conditions in contrast to the uniformly heated case. In the separated region formed behind the hill, it is found that the mean temperature profiles in the uniformly heated case are well decomposed into the separately heated cases. This is because the velocity fluctuation produced by the shear layer formed behind the hill is large, so the superposition of a passive scalar in the thermal field can be successfully realized. The rapid increase in the mean temperature near the uniformly heated wall should be due to the heat transfer near the leeward slope of the hill. On the other hand, the mean temperature distributions away from the wall are strongly affected by the turbulent thermal diffusion on the windward side of the hill.


1985 ◽  
Vol 34 (1) ◽  
pp. 77-94 ◽  
Author(s):  
H. L. Pécseli ◽  
T. Mikkelsen

Particle diffusion is investigated in a strictly two-dimensional collisionless guiding-centre model for a strongly magnetized plasma. An analytical expression is presented for the entire time variation of the mean square test-particle displacement in the limit of low-frequency, strongly turbulent, electric field fluctuations. The analysis relies on an explicit integral expression for the Lagrangian autocorrelation function in terms of the Eulerian wavenumber spectrum and a time-varying weight function. Bohm diffusion is discussed by means of a simple model spectrum. The analysis applies for turbulent transport associated with electrostatic convective cells, magnetostatic cells and drift wave turbulence with the assumption of local homogeneity and isotropy in two dimensions.


Sign in / Sign up

Export Citation Format

Share Document