dispersion modelling
Recently Published Documents


TOTAL DOCUMENTS

368
(FIVE YEARS 78)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Vol 806 ◽  
pp. 150128
Author(s):  
Magnus Ulimoen ◽  
Erik Berge ◽  
Heiko Klein ◽  
Brit Salbu ◽  
Ole Christian Lind

2021 ◽  
pp. 100124
Author(s):  
Marlon Brancher ◽  
Leonardo Hoinaski ◽  
Martin Piringer ◽  
Ademir A. Prata ◽  
Günther Schauberger

2021 ◽  
Vol 21 (14) ◽  
pp. 10851-10879
Author(s):  
Johannes de Leeuw ◽  
Anja Schmidt ◽  
Claire S. Witham ◽  
Nicolas Theys ◽  
Isabelle A. Taylor ◽  
...  

Abstract. Volcanic eruptions can cause significant disruption to society, and numerical models are crucial for forecasting the dispersion of erupted material. Here we assess the skill and limitations of the Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME) in simulating the dispersion of the sulfur dioxide (SO2) cloud from the 21–22 June 2019 eruption of the Raikoke volcano (48.3∘ N, 153.2∘ E). The eruption emitted around 1.5±0.2 Tg of SO2, which represents the largest volcanic emission of SO2 into the stratosphere since the 2011 Nabro eruption. We simulate the temporal evolution of the volcanic SO2 cloud across the Northern Hemisphere (NH) and compare our model simulations to high-resolution SO2 measurements from the TROPOspheric Monitoring Instrument (TROPOMI) and the Infrared Atmospheric Sounding Interferometer (IASI) satellite SO2 products. We show that NAME accurately simulates the observed location and horizontal extent of the SO2 cloud during the first 2–3 weeks after the eruption but is unable, in its standard configuration, to capture the extent and precise location of the highest magnitude vertical column density (VCD) regions within the observed volcanic cloud. Using the structure–amplitude–location (SAL) score and the fractional skill score (FSS) as metrics for model skill, NAME shows skill in simulating the horizontal extent of the cloud for 12–17 d after the eruption where VCDs of SO2 (in Dobson units, DU) are above 1 DU. For SO2 VCDs above 20 DU, which are predominantly observed as small-scale features within the SO2 cloud, the model shows skill on the order of 2–4 d only. The lower skill for these high-SO2-VCD regions is partly explained by the model-simulated SO2 cloud in NAME being too diffuse compared to TROPOMI retrievals. Reducing the standard horizontal diffusion parameters used in NAME by a factor of 4 results in a slightly increased model skill during the first 5 d of the simulation, but on longer timescales the simulated SO2 cloud remains too diffuse when compared to TROPOMI measurements. The skill of NAME to simulate high SO2 VCDs and the temporal evolution of the NH-mean SO2 mass burden is dominated by the fraction of SO2 mass emitted into the lower stratosphere, which is uncertain for the 2019 Raikoke eruption. When emitting 0.9–1.1 Tg of SO2 into the lower stratosphere (11–18 km) and 0.4–0.7 Tg into the upper troposphere (8–11 km), the NAME simulations show a similar peak in SO2 mass burden to that derived from TROPOMI (1.4–1.6 Tg of SO2) with an average SO2 e-folding time of 14–15 d in the NH. Our work illustrates how the synergy between high-resolution satellite retrievals and dispersion models can identify potential limitations of dispersion models like NAME, which will ultimately help to improve dispersion modelling efforts of volcanic SO2 clouds.


2021 ◽  
Author(s):  
Martin John Osborne ◽  
Johannes de Leeuw ◽  
Claire Witham ◽  
Anja Schmidt ◽  
Frances Beckett ◽  
...  

Abstract. Between 27 June and 14 July 2019 aerosol layers were observed by the United Kingdom (UK) Raman lidar network in the upper troposphere and lower stratosphere. The arrival of these aerosol layers in late June caused some concern within the London Volcanic Ash Advisory Centre (VAAC) as according to dispersion simulations the volcanic plume from the 21 June 2019 eruption of Raikoke was not expected over the UK until early July. Using dispersion simulations from the Met Office Numerical Atmospheric-dispersion Modelling Environment (NAME), and supporting evidence from satellite and in-situ aircraft observations, we show that the early arrival of the stratospheric layers was not due to aerosols from the explosive eruption of the Raikoke volcano, but due to biomass burning smoke aerosols associated with intense forest fires in Alberta, Canada that occurred four days prior to the Raikoke eruption. We use the observations and model simulations to describe the dispersion of both the volcanic and forest fire aerosol clouds, and estimate that the initial Raikoke ash aerosol cloud contained around 15 Tg of volcanic ash, and that the forest fires produced around 0.2 Tg of biomass burning aerosol. The operational monitoring of volcanic aerosol clouds is a vital capability in terms of aviation safety and the synergy of NAME dispersion simulations and lidar data with depolarising capabilities allowed scientists at the Met Office to interpret the various aerosol layers over the UK, and attribute the material to their sources. The use of NAME allowed the identification of the observed stratospheric layers that reached the UK on 27 June as biomass burning aerosol, characterised by a particle linear depolarisation ratio of 9 %, whereas with the lidar alone the latter could have been identified as the early arrival of a volcanic ash/sulphate mixed aerosol cloud. In the case under study, given the low concentration estimates, the exact identification of the aerosol layers would have made little substantive difference to the decision making process within the London VAAC. However, our work shows how the use of dispersion modelling together with multiple observation sources enabled us to create a more complete description of atmospheric aerosol loading.


Author(s):  
Silvia Massaro ◽  
Fabio Dioguardi ◽  
Laura Sandri ◽  
Giancarlo Tamburello ◽  
Jacopo Selva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document