scholarly journals Multivariate scaling of maximum proton energy in intense laser driven ion acceleration

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Yuji Takagi ◽  
Natsumi Iwata ◽  
Emmanuel d'Humieres ◽  
Yasuhiko Sentoku
2012 ◽  
Vol 109 (18) ◽  
Author(s):  
S. Kar ◽  
K. F. Kakolee ◽  
B. Qiao ◽  
A. Macchi ◽  
M. Cerchez ◽  
...  

2015 ◽  
Vol 22 (9) ◽  
pp. 093106 ◽  
Author(s):  
A. Andreev ◽  
K. Platonov ◽  
A. Sharma ◽  
M. Murakami

2021 ◽  
Author(s):  
Yasuhiro Kuramitsu ◽  
Takumi Minami ◽  
Takamasa Hihara ◽  
Kentaro Sakai ◽  
Takahiro Nishimoto ◽  
...  

Abstract Atomically thin graphene is a transparent, highly electrically and thermally conductive, light-weight, and the strongest material. To date, graphene has found applications in many aspects including transport, medicine, electronics, energy, defense, and desalination. We demonstrate another disruptive application of graphene in the field of laser-ion acceleration, in which the unique features of graphene play indispensable role. Laser driven ion sources have been widely investigated for pure science, plasma diagnostics, medical and engineering applications. Recent developments of laser technologies allow us to access radiation regime of laser ion acceleration with relatively thin targets. However, the thinner target is the less durable and can be easily broken by the pedestal or prepulse through impact and heating prior to the main laser arrival. One of the solutions to avoid this is plasma mirror, which is a surface plasma created by the foot of the laser pulse on an optically transparent material working as an effective mirror only for the main laser peak. So far diamond like carbon (DLC) is used to explore the ion acceleration in extremely thin target regime (< 10 nm) with plasma mirrors, and it is necessary to use plasma mirrors even in moderately thin target regime (10-100 nm) to realize energetic ion generation. However, firstly DLC is not 2D material, and therefore, it is very expensive to make it thin and flat. Moreover, graphene is stronger than diamond at extremely thin regime, and much more reasonable for mass-production. Furthermore, installing and operating plasma mirrors at high repetition rate is also costly. Here we show another direct solution using graphene as the thinnest and strongest target ever made. We develop a facile transfer method to fabricate large-area suspended graphene (LSG) as target for laser ion acceleration with precision down to a single atomic layer. Direct irradiation of the LSG targets with an ultra intense laser generates energetic carbons and protons evidently showing the durability of graphene without plasma mirror. This extends the new frontier of science on graphene under extreme electromagnetic field, such as energy frontier and nuclear fusion.


Author(s):  
J. Hornung ◽  
Y. Zobus ◽  
P. Boller ◽  
C. Brabetz ◽  
U. Eisenbarth ◽  
...  

We present a study of laser-driven ion acceleration with micrometre and sub-micrometre thick targets, which focuses on the enhancement of the maximum proton energy and the total number of accelerated particles at the PHELIX facility. Using laser pulses with a nanosecond temporal contrast of up to $10^{-12}$ and an intensity of the order of $10^{20}~\text{W}/\text{cm}^{2}$ , proton energies up to 93 MeV are achieved. Additionally, the conversion efficiency at $45^{\circ }$ incidence angle was increased when changing the laser polarization to p, enabling similar proton energies and particle numbers as in the case of normal incidence and s-polarization, but reducing the debris on the last focusing optic.


2011 ◽  
Vol 29 (4) ◽  
pp. 437-446 ◽  
Author(s):  
M. Schnürer ◽  
A.A. Andreev ◽  
S. Steinke ◽  
T. Sokollik ◽  
T. Paasch-Colberg ◽  
...  

AbstractAdvancement of ion acceleration by intense laser pulses is studied with ultra-thin nanometer-thick diamond like carbon and micrometer-thick Titanium target foils. Both investigations aim at optimizing the electron density distribution which is the key for efficient laser driven ion acceleration. While recently found maximum ion energies achieved with ultra-thin foils mark record values micrometer thick foils are flexible in terms of atomic constituents. Electron recirculation is one prerequisite for the validity of a very simple model that can approximate the dependence of ion energies of nanometer-thick targets when all electrons of the irradiated target area interact coherently with the laser pulse and Coherent Acceleration of Ions by Laser pulses (CAIL) becomes dominant. Complementary experiments, an analytical model and particle in cell computer simulations show, that with regard to ultra-short laser pulses (duration ~45 fs at intensities up to 5 × 1019 W/cm2) and a micrometer-thick target foil with higher atomic number a close to linear increase of ion energies manifests in a certain range of laser intensities.


Sign in / Sign up

Export Citation Format

Share Document