ion energies
Recently Published Documents


TOTAL DOCUMENTS

249
(FIVE YEARS 15)

H-INDEX

31
(FIVE YEARS 1)

MRS Advances ◽  
2021 ◽  
Author(s):  
Janne Pakarinen ◽  
Lingfeng He ◽  
Jian Gan ◽  
Andrew T. Nelson ◽  
Anter El-Azab ◽  
...  

AbstractProton (H+) irradiation effects in polycrystalline UO2 have been studied. The irradiation was carried out using three ion energies and two different ion fluxes at 600 °C. Scanning electron microscopy (SEM) investigations showed that significant surface flaking took place. Focused ion beam (FIB) milling in SEM was successfully applied for extracting lamellas from uneven blistered surfaces for transmission electron microscopy (TEM) investigations allowing detailed investigations for the degradation mechanisms. High-resolution TEM for the flaked UO2 surfaces revealed that the implanted H+ formed sharp two-dimensional cavities at the peak ion-stopping region instead of diffusing to the matrix. The resulting lateral stress likely caused UO2 surface deterioration in good agreement with previous blistering and flaking studies on crystalline materials. Graphical abstract


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2521
Author(s):  
Marshall van Zijll ◽  
Samantha S. Spangler ◽  
Andrew R. Kim ◽  
Hazel R. Betz ◽  
Shirley Chiang

Isolated pyramids, 30–80 nm wide and 3–20 nm tall, form during sputter-annealing cycles on the Ge (110) surface. Pyramids have four walls with {19 13 1} faceting and a steep mound at the apex. We used scanning tunneling microscopy (STM) under ultrahigh vacuum conditions to periodically image the surface at ion energies between 100 eV and 500 eV and incremental total flux. Pyramids are seen using Ar+ between 200 eV and 400 eV, and require Ag to be present on the sample or sample holder. We suspect that the pyramids are initiated by Ag co-sputtered onto the surface. Growth of pyramids is due to the gathering of step edges with (16 × 2) reconstruction around the pyramid base during layer-by-layer removal of the substrate, and conversion to {19 13 1} faceting. The absence of pyramids using Ar+ energies above 400 eV is likely due to surface damage that is insufficiently annealed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria G. Pelizzo ◽  
Alain J. Corso ◽  
Giovanni Santi ◽  
René Hübner ◽  
Denis Garoli ◽  
...  

AbstractTerrestrial accelerator facilities can generate ion beams which enable the testing of the resistance of materials and thin film coatings to be used in the space environment. In this work, a $$\hbox {TiO}_2$$ TiO 2 /Al bi-layer coating has been irradiated with a $$\hbox {He}^+$$ He + beam at three different energies. The same flux and dose have been used in order to investigate the damage dependence on the energy. The energies were selected to be in the range 4–100 keV, in order to consider those associated to the quiet solar wind and to the particles present in the near-Earth space environment. The optical, morphological and structural modifications have been investigated by using various techniques. Surprisingly, the most damaged sample is the one irradiated at the intermediate energy, which, on the other hand, corresponds to the case in which the interface between the two layers is more stressed. Results demonstrate that ion energies for irradiation tests must be carefully selected to properly qualify space components.


2021 ◽  
Vol 11 (2) ◽  
pp. 612
Author(s):  
Sergey P. Zimin ◽  
Ildar I. Amirov ◽  
Sergey V. Vasilev ◽  
Ivan S. Fedorov ◽  
Leonid A. Mazaletskiy ◽  
...  

Cu2−xSe films were deposited on Corning glass substrates by radio frequency (RF) magnetron sputtering and annealed at 300 °C for 20 min under N2 gas ambient. The films had a thickness of 850–870 nm and a chemical composition of Cu1.75Se. The initial structure of the films was nanocrystalline with a complex architecture and pores. The investigated films were plasma treated with RF (13.56 MHz) high-density low-pressure inductively coupled argon plasma. The plasma treatment was conducted at average ion energies of 25 and 200 eV for durations of 30, 60, and 90 s. Notably, changes are evident in the surface morphology, and the chemical composition of the films changed from x = 0.25 to x = 0.10 to x = 0.00, respectively, after plasma treatment at average ion energies of 25 and 200 eV, respectively.


Author(s):  
З.А. Исаханов ◽  
Б.Е. Умирзаков ◽  
С.С. Насриддинов ◽  
З.Э. Мухтаров ◽  
Р.М. Ёркулов

The spatial distributions of ions (K+, Na+) passed through thin polycrystalline and single-crystalline Al films with the thickness from 180 to 600 Å and critical channeling angles have been studied. The ion energies have been varied within the range E0 = 10-30 keV. It has been shown that an increase in the energy of the primary ion beam leads to a decrease in the width of the maxima of the angular distribution, which is associated with a decrease in the critical channeling angle ψcr. It has been found that the value ψcr does not exceed 4-50 for axial channeling and 9-100 for planar channeling.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Isidore Last ◽  
Andreas Heidenreich ◽  
Joshua Jortner

AbstractWe present a theoretical-computational study of the formation, structure, composition, energetics, dynamics and expansion of nanoplasmas consisting of high-energy matter on the nanoscale of ions and electrons. Molecular dynamics simulations explored the structure and energetics of hydrogen and neon persistent nanoplasmas formed under the condition of incomplete outer ionization by the laser field. We observed a marked microscopic inhomogeneity of the structure and the charge distribution of exploding nanoplasmas on the nanoscale. This is characterized by a nearly neutral, uniform, interior domain observed for the first time, and a highly positively charged, exterior domain, with these two domains being separated by a transition domain. We established the universality of the general features of the shape of the charge distribution, as well as of the energetics and dynamics of individual ions in expanding persistent nanoplasmas containing different positive ions. The inhomogeneous three-domain shell structure of exploding nanoplasmas exerts major effects on the local ion energies, which are larger by one order of magnitude in the exterior, electron-depleted domain than in the interior, electron-rich domain, with the major contribution to the ion energies originating from electrostatic interactions. The radial structural inhomogeneity of exploding nanoplasmas bears analogy to the inhomogeneous transport regime in expanded and supercritical metals undergoing metal-nonmetal transition.


2020 ◽  
Author(s):  
Sofia Bergman ◽  
Gabriella Stenberg Wieser ◽  
Martin Wieser ◽  
Fredrik Johansson ◽  
Anders Eriksson

<p><span>Low-energy ions play important roles in many processes in the environments around various bodies in the solar system. At comets, they are, for example, important for the understanding of the interaction of the cometary particles with the solar wind, including the formation of the diamagnetic cavity. </span></p><p><span>Unfortunately, spacecraft charging makes low-energy ions difficult to measure using in-situ techniques. The charged spacecraft surface will attract or repel the ions prior to detection, affecting both their trajectories and energy. The affected trajectories will change the effective FOV of the instrument. A negatively charged spacecraft will focus incoming positive ions, enlarging and distorting the FOV.</span></p><p><span>We model the low-energy FOV distortion of the Ion Composition Analyzer (ICA) on board Rosetta. ICA is an ion spectrometer measuring positive ions with an energy range of a few eV to 40 keV. Rosetta was commonly charged to a negative potential throughout the mission, and consequently the positive ions were accelerated towards the spacecraft before detection. This distorted the low-energy part of the data. We use the Spacecraft Plasma Interaction Software (SPIS) to simulate the environment around the spacecraft and backtrace particles from the instrument. We then compare the travel direction of the ions at detection and infinity, and draw conclusions about the resulting FOV distortion. We investigate the distortion for different spacecraft potentials and Debye lengths of the surrounding plasma. </span></p><p> <span>The results show that the effective FOV of ICA is severely distorted at low energies, but the distortion varies between different viewing directions of the instrument. It is furthermore sensitive to changes in the Debye length and we observe a small non-linearity in the relation between FOV distortion, ion energy and spacecraft potential. Generally, the FOV is not significantly affected when the energy of the ions is above twice the spacecraft potential. </span></p>


Sign in / Sign up

Export Citation Format

Share Document