scholarly journals Quantum Algorithm for Time-Dependent Hamiltonian Simulation by Permutation Expansion

PRX Quantum ◽  
2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Yi-Hsiang Chen ◽  
Amir Kalev ◽  
Itay Hen
2022 ◽  
Vol 3 (1) ◽  
pp. 1-37
Author(s):  
Almudena Carrera Vazquez ◽  
Ralf Hiptmair ◽  
Stefan Woerner

We present a quantum algorithm to solve systems of linear equations of the form Ax = b , where A is a tridiagonal Toeplitz matrix and b results from discretizing an analytic function, with a circuit complexity of O (1/√ε, poly (log κ, log N )), where N denotes the number of equations, ε is the accuracy, and κ the condition number. The repeat-until-success algorithm has to be run O (κ/(1-ε)) times to succeed, leveraging amplitude amplification, and needs to be sampled O (1/ε 2 ) times. Thus, the algorithm achieves an exponential improvement with respect to N over classical methods. In particular, we present efficient oracles for state preparation, Hamiltonian simulation, and a set of observables together with the corresponding error and complexity analyses. As the main result of this work, we show how to use Richardson extrapolation to enhance Hamiltonian simulation, resulting in an implementation of Quantum Phase Estimation (QPE) within the algorithm with 1/√ε circuits that can be run in parallel each with circuit complexity 1/√ ε instead of 1/ε. Furthermore, we analyze necessary conditions for the overall algorithm to achieve an exponential speedup compared to classical methods. Our approach is not limited to the considered setting and can be applied to more general problems where Hamiltonian simulation is approximated via product formulae, although our theoretical results would need to be extended accordingly. All the procedures presented are implemented with Qiskit and tested for small systems using classical simulation as well as using real quantum devices available through the IBM Quantum Experience.


2017 ◽  
Vol 17 (7&8) ◽  
pp. 623-635
Author(s):  
Leonardo Novo ◽  
Dominic Berry

We describe an improved version of the quantum algorithm for Hamiltonian simulation based on the implementation of a truncated Taylor series of the evolution operator. The idea is to add an extra step to the previously known algorithm which implements an operator that corrects the weightings of the Taylor series. This way, the desired accuracy is achieved with an improvement in the overall complexity of the algorithm. This quantum simulation method is applicable to a wide range of Hamiltonians of interest, including to quantum chemistry problems.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 534
Author(s):  
Qi Zhao ◽  
Xiao Yuan

Quantum computing can efficiently simulate Hamiltonian dynamics of many-body quantum physics, a task that is generally intractable with classical computers. The hardness lies at the ubiquitous anti-commutative relations of quantum operators, in corresponding with the notorious negative sign problem in classical simulation. Intuitively, Hamiltonians with more commutative terms are also easier to simulate on a quantum computer, and anti-commutative relations generally cause more errors, such as in the product formula method. Here, we theoretically explore the role of anti-commutative relation in Hamiltonian simulation. We find that, contrary to our intuition, anti-commutative relations could also reduce the hardness of Hamiltonian simulation. Specifically, Hamiltonians with mutually anti-commutative terms are easy to simulate, as what happens with ones consisting of mutually commutative terms. Such a property is further utilized to reduce the algorithmic error or the gate complexity in the truncated Taylor series quantum algorithm for general problems. Moreover, we propose two modified linear combinations of unitaries methods tailored for Hamiltonians with different degrees of anti-commutation. We numerically verify that the proposed methods exploiting anti-commutative relations could significantly improve the simulation accuracy of electronic Hamiltonians. Our work sheds light on the roles of commutative and anti-commutative relations in simulating quantum systems.


2017 ◽  
Vol 17 (1&2) ◽  
pp. 41-64
Author(s):  
Anirban Narayan Chowdhury and ◽  
Rolando D. Somma

We present quantum algorithms for solving two problems regarding stochastic processes. The first algorithm prepares the thermal Gibbs state of a quantum system and runs in time almost linear in p Nβ/Z and polynomial in log(1/epsilon), where N is the Hilbert space dimension, β is the inverse temperature, Z is the partition function, and epsilon is the desired precision of the output state. Our quantum algorithm exponentially improves the complexity dependence on 1/epsilon and polynomially improves the dependence on β of known quantum algorithms for this problem. The second algorithm estimates the hitting time of a Markov chain. For a sparse stochastic matrix P, it runs in time almost linear in 1/(epsilon ∆3/2 ), where epsilon is the absolute precision in the estimation and ∆ is a parameter determined by P, and whose inverse is an upper bound of the hitting time. Our quantum algorithm quadratically improves the complexity dependence on 1/epsilon and 1/∆ of the analog classical algorithm for hitting-time estimation. Both algorithms use tools recently developed in the context of Hamiltonian simulation, spectral gap amplification, and solving linear systems of equations.


2020 ◽  
Vol 20 (1&2) ◽  
pp. 14-36
Author(s):  
Souichi Takahira ◽  
Asuka Ohashi ◽  
Tomohiro Sogabe ◽  
Tsuyoshi S. Usuda

For matrix A, vector b and function f, the computation of vector f(A)b arises in many scientific computing applications. We consider the problem of obtaining quantum state |f> corresponding to vector f(A)b. There is a quantum algorithm to compute state |f> using eigenvalue estimation that uses phase estimation and Hamiltonian simulation e^{\im A t}. However, the algorithm based on eigenvalue estimation needs \poly(1/\epsilon) runtime, where \epsilon is the desired accuracy of the output state. Moreover, if matrix A is not Hermitian, \e^{\im A t} is not unitary and we cannot run eigenvalue estimation. In this paper, we propose a quantum algorithm that uses Cauchy's integral formula and the trapezoidal rule as an approach that avoids eigenvalue estimation. We show that the runtime of the algorithm is \poly(\log(1/\epsilon)) and the algorithm outputs state |f> even if A is not Hermitian.


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 254 ◽  
Author(s):  
Dominic W. Berry ◽  
Andrew M. Childs ◽  
Yuan Su ◽  
Xin Wang ◽  
Nathan Wiebe

The difficulty of simulating quantum dynamics depends on the norm of the Hamiltonian. When the Hamiltonian varies with time, the simulation complexity should only depend on this quantity instantaneously. We develop quantum simulation algorithms that exploit this intuition. For sparse Hamiltonian simulation, the gate complexity scales with the L1 norm ∫0tdτ‖H(τ)‖max, whereas the best previous results scale with tmaxτ∈[0,t]‖H(τ)‖max. We also show analogous results for Hamiltonians that are linear combinations of unitaries. Our approaches thus provide an improvement over previous simulation algorithms that can be substantial when the Hamiltonian varies significantly. We introduce two new techniques: a classical sampler of time-dependent Hamiltonians and a rescaling principle for the Schrödinger equation. The rescaled Dyson-series algorithm is nearly optimal with respect to all parameters of interest, whereas the sampling-based approach is easier to realize for near-term simulation. These algorithms could potentially be applied to semi-classical simulations of scattering processes in quantum chemistry.


Sign in / Sign up

Export Citation Format

Share Document