An X-ray interferometer with a large and variable path length difference

2001 ◽  
Vol 34 (2) ◽  
pp. 166-171 ◽  
Author(s):  
K. Fezzaa ◽  
W.-K. Lee

The first chromatic hard X-ray interferometer with a large and variable path length difference has been built and successfully tested. Interference fringe visibility was measured as a function of the path length difference. Based on the measurements, fringe visibility analysis was performed to give the transmitted beam coherence lengths. The results agree very well with expected coherence values based on the angular and spectral acceptances of the interferometer.

Author(s):  
T. Thuering ◽  
M. Stampanoni

The monochromatic and polychromatic performance of a grating interferometer is theoretically analysed. The smallest detectable refraction angle is used as a metric for the efficiency in acquiring a differential phase-contrast image. Analytical formulae for the visibility and the smallest detectable refraction angle are derived for Talbot-type and Talbot–Lau-type interferometers, respectively, providing a framework for the optimization of the geometry. The polychromatic performance of a grating interferometer is investigated analytically by calculating the energy-dependent interference fringe visibility, the spectral acceptance and the polychromatic interference fringe visibility. The optimization of grating interferometry is a crucial step for the design of application-specific systems with maximum performance.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xi Yang ◽  
Weishi Wan ◽  
Lijun Wu ◽  
Victor Smaluk ◽  
Timur Shaftan ◽  
...  

Abstract A preliminary design of a mega-electron-volt (MeV) monochromator with 10−5 energy spread for ultrafast electron diffraction (UED) and ultrafast electron microscopy (UEM) is presented. Such a narrow energy spread is advantageous in both the single shot mode, where the momentum resolution in diffraction is improved, and the accumulation mode, where shot-to-shot energy jitter is reduced. In the single-shot mode, we numerically optimized the monochromator efficiency up to 13% achieving 1.3 million electrons per pulse. In the accumulation mode, to mitigate the efficiency degradation caused by the shot-to-shot energy jitter, an optimized gun phase yields only a mild reduction of the single-shot efficiency, therefore the number of accumulated electrons nearly proportional to the repetition rate. Inspired by the recent work of Qi et al. (Phys Rev Lett 124:134803, 2020), a novel concept of applying reverse bending magnets to adjust the energy-dependent path length difference has been successfully realized in designing a MeV monochromator to achieve the minimum energy-dependent path length difference between cathode and sample. Thanks to the achromat design, the pulse length of the electron bunches and the energy-dependent timing jitter can be greatly reduced to the 10 fs level. The introduction of such a monochromator provides a major step forward, towards constructing a UEM with sub-nm resolution and a UED with ten-femtosecond temporal resolution. The one-to-one mapping between the electron beam parameter and the diffraction peak broadening enables a real-time nondestructive diagnosis of the beam energy spread and divergence. The tunable electric–magnetic monochromator allows the scanning of the electron beam energy with a 10−5 precision, enabling online energy matching for the UEM, on-momentum flux maximizing for the UED and real-time energy measuring for energy-loss spectroscopy. A combination of the monochromator and a downstream chicane enables “two-color” double pulses with femtosecond duration and the tunable delay in the range of 10 to 160 fs, which can potentially provide an unprecedented femtosecond time resolution for time resolved UED.


Sign in / Sign up

Export Citation Format

Share Document