path length difference
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xi Yang ◽  
Weishi Wan ◽  
Lijun Wu ◽  
Victor Smaluk ◽  
Timur Shaftan ◽  
...  

Abstract A preliminary design of a mega-electron-volt (MeV) monochromator with 10−5 energy spread for ultrafast electron diffraction (UED) and ultrafast electron microscopy (UEM) is presented. Such a narrow energy spread is advantageous in both the single shot mode, where the momentum resolution in diffraction is improved, and the accumulation mode, where shot-to-shot energy jitter is reduced. In the single-shot mode, we numerically optimized the monochromator efficiency up to 13% achieving 1.3 million electrons per pulse. In the accumulation mode, to mitigate the efficiency degradation caused by the shot-to-shot energy jitter, an optimized gun phase yields only a mild reduction of the single-shot efficiency, therefore the number of accumulated electrons nearly proportional to the repetition rate. Inspired by the recent work of Qi et al. (Phys Rev Lett 124:134803, 2020), a novel concept of applying reverse bending magnets to adjust the energy-dependent path length difference has been successfully realized in designing a MeV monochromator to achieve the minimum energy-dependent path length difference between cathode and sample. Thanks to the achromat design, the pulse length of the electron bunches and the energy-dependent timing jitter can be greatly reduced to the 10 fs level. The introduction of such a monochromator provides a major step forward, towards constructing a UEM with sub-nm resolution and a UED with ten-femtosecond temporal resolution. The one-to-one mapping between the electron beam parameter and the diffraction peak broadening enables a real-time nondestructive diagnosis of the beam energy spread and divergence. The tunable electric–magnetic monochromator allows the scanning of the electron beam energy with a 10−5 precision, enabling online energy matching for the UEM, on-momentum flux maximizing for the UED and real-time energy measuring for energy-loss spectroscopy. A combination of the monochromator and a downstream chicane enables “two-color” double pulses with femtosecond duration and the tunable delay in the range of 10 to 160 fs, which can potentially provide an unprecedented femtosecond time resolution for time resolved UED.


2017 ◽  
Author(s):  
Masanori Takabayashi ◽  
Hassaan Majeed ◽  
Andre Kajdacsy-Balla ◽  
Gabriel Popescu

AbstractTissue refractive index provides important information about morphology at the nanoscale. Since the malignant transformation involves both intra- and inter-cellular changes in the refractive index map, the tissue disorder measurement can be used to extract important diagnosis information. Quantitative phase imaging (QPI) provides a practical means of extracting this information as it maps the optical path-length difference (OPD) across a tissue sample with sub-wavelength sensitivity. In this work, we employ QPI to compare the tissue disorder strength between benign and malignant breast tissue histology samples. Our results show that disease progression is marked by a significant increase in the disorder strength. Since our imaging system can be added as an upgrading module to an existing microscope, we anticipate that it can be integrated easily in the pathology work flow.


2016 ◽  
Vol 71 (3) ◽  
pp. 446-455
Author(s):  
Ariel Bohman ◽  
Mark A. Arnold

Molar absorptivity is a fundamental molecular property that quantifies absorption strength as a function of wavelength. Absolute measurements of molar absorptivity demand accounting for all mechanisms of light attenuation, including reflective losses at interfaces associated with the sample. Ideally, such measurements are performed in nonabsorbing solvents and reflective losses can be determined in a straightforward manner from Fresnel equations or effectively accounted for by path length difference methods. At near-infrared wavelengths, however, many solvents, including water, are absorbing which complicates the quantification of reflective losses. Here, generalized equations are developed for calculating absolute molar absorptivities of neat liquids wherein the dependency of reflective loss on absorption properties of the liquid are considered explicitly. The resulting equations are used to characterize sensitivity of absolute molar absorptivity measurements for solvents to the absorption strength of the solvent as well as the path length of the measurement. Methods are derived from these equations to properly account for reflective losses in general and the effectiveness of these methods is demonstrated for absolute molar absorptivity measurements for water over the combination region (5000–4000 cm−1) of the near-infrared spectrum. Results indicate that ignoring solvent absorption effects can incorporate wide ranging systematic errors depending upon experimental conditions. As an example, systematic errors range from 0 to 10% for common conditions used in the measurement of absolute molar absorptivity of water over the combination region of the near-infrared spectrum.


2016 ◽  
Vol 55 (11) ◽  
pp. 2904 ◽  
Author(s):  
Shumpei Shimada ◽  
Makoto Shizuka ◽  
Neisei Hayashi ◽  
Yosuke Mizuno ◽  
Kentaro Nakamura

2008 ◽  
Vol 16 (4) ◽  
Author(s):  
P. Hlubina ◽  
J. Luňáček ◽  
D. Ciprian ◽  
R. Chlebus

AbstractWe revealed that the phase function of a thin-film structure measured by a white-light spectral interferometric technique depends on the path length difference adjusted in a Michelson interferometer. This phenomenon is due to a dispersion error of a beam splitter cube, the effective thickness of which varies with the adjusted path length difference. A technique for eliminating the effect in measurement of the phase function is described. In a first step, the Michelson interferometer with same metallic mirrors is used to measure the effective thickness of the beam splitter cube as a function of the path length difference. In a second step, one of the mirrors of the interferometer is replaced by a thin-film structure and its phase function is measured for the same path length differences as those adjusted in the first step. In both steps, the phase is retrieved from the recorded spectral interferograms by using a windowed Fourier transform applied in the wavelength domain.


Sign in / Sign up

Export Citation Format

Share Document