X-ray dynamical diffraction: the concept of a locally plane wave

Author(s):  
V. Mocella ◽  
Y. Epelboin ◽  
J. P. Guigay
2016 ◽  
Vol 23 (5) ◽  
pp. 1272-1272
Author(s):  
Minas K. Balyan

Formulae in the paper by Balyan (2015) [J. Synchrotron Rad.22, 1410–1418] are corrected.


2021 ◽  
Vol 77 (2) ◽  
pp. 149-159
Author(s):  
Minas Balyan ◽  
Levon Levonyan ◽  
Karapet Trouni

The dynamical diffraction Talbot effect takes place inside a crystal, when a periodic object is illuminated by a plane or spherical X-ray wave which then falls on the crystal at an angle close to the Bragg angle for some reflection. Both theoretical consideration and numerical calculations show that the dynamical diffraction Talbot effect also takes place behind the crystal. The effect is accompanied by the dynamical diffraction pendulum effect and wave focusing. Expressions are found for the dynamical diffraction Talbot distance for areas before and after focusing. The spatial Fourier spectrum of the periodic object is obtained on the focusing plane. Detailed analysis when the periodic object is illuminated by a plane wave has shown new features of this effect. The dynamical diffraction Talbot effect in free space can be used to determine the structure of a periodic object, to determine the structure of an arbitrary object placed before or after the periodic object, and to determine structural defects and deformations of the crystal.


1991 ◽  
Vol 44 (6) ◽  
pp. 693 ◽  
Author(s):  
TJ Davis

A theoretical framework is developed to describe the dynamical diffraction of X-rays in perfect and imperfect crystals. The propagation of the X-ray beam inside the crystal is described by the evolution of a set of trajectories in the complex reflectance plane. The trajectory path is determined from a form of the Takagi-Taupin equations and leads naturally to simple forms for the crystal reflectivity for perfect crystals. A stochastic model for the effects of crystal defects is developed in terms of the Langevin equation which leads to a description of diffraction from imperfect crystals as the evolution of densities in a parameter space, described by a Fokker-Planck equation.


1984 ◽  
Vol 49 (1) ◽  
pp. L1-L4
Author(s):  
Kohtaro Ishida ◽  
Yoshinori Kobayashi ◽  
Hiroyuki Katoh
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document