scholarly journals On the calculation of the electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom model

Author(s):  
Anatoliy Volkov ◽  
Harry F. King ◽  
Philip Coppens ◽  
Louis J. Farrugia
Author(s):  
Jessie Weatherly ◽  
Piero Macchi ◽  
Anatoliy Volkov

The previously reported exact potential and multipole moment (EP/MM) method for fast and precise evaluation of the intermolecular electrostatic interaction energies in molecular crystals using the pseudoatom representation of the electron density [Nguyen, Macchi & Volkov (2020), Acta Cryst. A76, 630–651] has been extended to the calculation of the electrostatic potential (ESP), electric field (EF) and electric field gradient (EFG) in an infinite crystal. The presented approach combines an efficient Ewald-type summation (ES) of atomic multipoles up to the hexadecapolar level in direct and reciprocal spaces with corrections for (i) the net polarization of the sample (the `surface term') due to a net dipole moment of the crystallographic unit cell (if present) and (ii) the short-range electron-density penetration effects. The rederived and reported closed-form expressions for all terms in the ES algorithm have been augmented by the expressions for the surface term available in the literature [Stenhammar, Trulsson & Linse (2011), J. Chem. Phys. 134, 224104] and the exact potential expressions reported in a previous study [Volkov, King, Coppens & Farrugia (2006), Acta Cryst. A62, 400–408]. The resulting algorithm, coded using Fortran in the XDPROP module of the software package XD, was tested on several small molecular crystal systems (formamide, benzene, L-dopa, paracetamol, amino acids etc.) and compared with a series of EP/MM-based direct-space summations (DS) performed within a certain number of unit cells generated along both the positive and negative crystallographic directions. The EP/MM-based ES technique allows for a noticeably more precise determination of the EF and EFG and significantly better precision of the evaluated ESP when compared with the DS calculations, even when the latter include contributions from an array of symmetry-equivalent atoms generated within four additional unit cells along each crystallographic direction. In terms of computational performance, the ES/EP/MM method is significantly faster than the DS calculations performed within the extended unit-cell limits but trails the DS calculations within the reduced summation ranges. Nonetheless, the described EP/MM-based ES algorithm is superior to the direct-space summations as it does not require the user to monitor continuously the convergence of the evaluated properties as a function of the summation limits and offers a better precision–performance balance.


Author(s):  
Samuel Silva dos Santos ◽  
Michel L. Marcondes ◽  
Ivan P. Miranda ◽  
Pedro Rocha-Rodrigues ◽  
Lucy Vitória Credidio Assali ◽  
...  

An ab-initio study for several hybrid improper ferroelectric (HIF) materials in the Ruddlesden-Popper phases and double perovskites structures is here presented. The focus is on the correlation between the electric...


2007 ◽  
Vol 62 (12) ◽  
pp. 711-715 ◽  
Author(s):  
Ahmad Seif ◽  
Mahmoud Mirzaei ◽  
Mehran Aghaie ◽  
Asadollah Boshra

Density functional theory (DFT) calculations were performed to calculate the electric field gradient (EFG) tensors at the sites of aliminium (27Al) and nitrogen (14N) nuclei in an 1 nm of length (6,0) single-walled aliminium nitride nanotube (AlNNT) in three forms of the tubes, i. e. hydrogencapped, aliminium-terminated and nitrogen-terminated as representatives of zigzag AlNNTs. At first, each form was optimized at the level of the Becke3,Lee-Yang-Parr (B3LYP) method, 6-311G∗∗ basis set. After, the EFG tensors were calculated at the level of the B3LYP method, 6-311++G∗∗ and individual gauge for localized orbitals (IGLO-II and IGLO-III) types of basis sets in each of the three optimized forms and were converted to experimentally measurable nuclear quadrupole resonance (NQR) parameters, i. e. quadrupole coupling constant (qcc) and asymmetry parameter (ηQ). The evaluated NQR parameters revealed that the considered model of AlNNT can be divided into four equivalent layers with similar electrostatic properties.With the exception of Al-1, all of the three other Al layers have almost the same properties, however, N layers show significant differences in the magnitudes of the NQR parameters in the length of the nanotube. Furthermore, the evaluated NQR parameters of Al-1 in the Al-terminated form and N-1 in the N-terminated form revealed the different roles of Al (base agent) and of N (acid agent) in AlNNT. All the calculations were carried out using the GAUSSIAN 98 package program.


Sign in / Sign up

Export Citation Format

Share Document