Applications of the Cambridge Structural Database to molecular inorganic chemistry

2002 ◽  
Vol 58 (3) ◽  
pp. 398-406 ◽  
Author(s):  
A. Guy Orpen

Applications of the data in the Cambridge Structural Database (CSD) to knowledge acquisition and fundamental research in molecular inorganic chemistry are reviewed. Various classes of application are identified, including the derivation of typical molecular dimensions and their variability and transferability, the derivation and testing of theories of molecular structure and bonding, the identification of reaction paths and related conformational analyses based on the structure correlation hypothesis, and the identification of common and presumably energetically favourable intermolecular interactions. In many of these areas, the availability of plentiful structural data from the CSD is set against the emergence of high-quality computational data on the geometry and energy of inorganic complexes.

2002 ◽  
Vol 58 (3) ◽  
pp. 380-388 ◽  
Author(s):  
Frank H. Allen

The Cambridge Structural Database (CSD) now contains data for more than a quarter of a million small-molecule crystal structures. The information content of the CSD, together with methods for data acquisition, processing and validation, are summarized, with particular emphasis on the chemical information added by CSD editors. Nearly 80% of new structural data arrives electronically, mostly in CIF format, and the CCDC acts as the official crystal structure data depository for 51 major journals. The CCDC now maintains both a CIF archive (more than 73000 CIFs dating from 1996), as well as the distributed binary CSD archive; the availability of data in both archives is discussed. A statistical survey of the CSD is also presented and projections concerning future accession rates indicate that the CSD will contain at least 500000 crystal structures by the year 2010.


2015 ◽  
Vol 44 (39) ◽  
pp. 17007-17014 ◽  
Author(s):  
Sean R. Parmelee ◽  
Neal P. Mankad

Structural data pertaining to bimetallic complexes with semibridging carbonyl (SBCO) ligands are analyzed using a comprehensive search of the Cambridge Structural Database (CSD).


2010 ◽  
Vol 50 (4) ◽  
pp. 572-584 ◽  
Author(s):  
Paul C. D. Hawkins ◽  
A. Geoffrey Skillman ◽  
Gregory L. Warren ◽  
Benjamin A. Ellingson ◽  
Matthew T. Stahl

2014 ◽  
Vol 29 (S2) ◽  
pp. S19-S30 ◽  
Author(s):  
Jason C. Cole ◽  
Elena A. Kabova ◽  
Kenneth Shankland

The Cambridge Structural Database (CSD) is a database of small molecule organic and organometallic crystal structures elucidated using X-Ray and neutron crystallography. The CSD is distributed alongside a system of software (the Cambridge Structural Database System) to academic and industrial users. The system contains a number of applications (in particular DASH, ConQuest, and Mogul) that can be used to aid crystallographers in the solution and refinement of crystal structures from powder diffraction data, and in the interpretation of crystal structure models (in particular, Mercury). This publication uses a racemic form of ornidazole (Z′ = 3) to illustrate the efficacy of DASH in the crystal structure solution from powder diffraction data. Furthermore, numerous features in Mogul and Mercury that aid crystal structure solution and interpretation of crystallographic data are revised. Finally, a review of a new method for using database-derived geometric information directly in structural solution is presented.


1990 ◽  
Vol 55 (8) ◽  
pp. 2059-2065 ◽  
Author(s):  
Jaroslav Vojtěchovský ◽  
Jindřich Hašek ◽  
Jiří Ječný ◽  
Karel Huml

Title compound is triclinic, Mr = 461.60; P1, a = 9.158(1), b = 16.062(3), c = 19.472(3) Å, α = 110.69(1)°, β = 89.70(1)°, γ = 103.17(1)°, V = 2 600(1) Å3, Z = 4, Do = 1.15(3), Dc = 1.179(1) Mg m-3, λ(CuKα) = 1.5418 Å, μ = 0.509 mm-1, F(000) = 976 K, R = 0.040 for 8 059 unique observed reflections. Both symmetrically independent molecules show a different geometry of the 1,4-dihydropyridine ring: either the boat conformation with apexes C(sp3), N and boat angles 14.7(3)° and 10.3(2)° respectively, or the planar conformation. The conformation has been compared with similar dihydropyridines obtained from Cambridge Structural Database.


2020 ◽  
Vol 11 (32) ◽  
pp. 8373-8387 ◽  
Author(s):  
Peyman Z. Moghadam ◽  
Aurelia Li ◽  
Xiao-Wei Liu ◽  
Rocio Bueno-Perez ◽  
Shu-Dong Wang ◽  
...  

Large-scale targeted exploration of metal–organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far.


2004 ◽  
Vol 76 (5) ◽  
pp. 959-964 ◽  
Author(s):  
J. Karolak-Wojciechowska ◽  
A. Fruzinski

Based on our contemporary studies on the structures of biologically active molecules, we focus our attention on the aliphatic chain and its conformation. That flexible spacer definitely influenced the balanced position of all pharmacophoric points in molecules of biological ligands. The one atomic linker and two or three atomic spacers with one heteroatom X =O, S, CH2, NH have been taken into account. The conformational preferences clearly depend on the heteroatom X. In the discussion, we utilize our own X-ray data, computation chemistry methods, population analysis, and statistical data from the Cambridge Structural Database (CSD).


Author(s):  
Wilhelm Maximilian Hützler ◽  
Michael Bolte

In order to study the preferred hydrogen-bonding pattern of 6-amino-2-thiouracil, C4H5N3OS, (I), crystallization experiments yielded five different pseudopolymorphs of (I), namely the dimethylformamide disolvate, C4H5N3OS·2C3H7NO, (Ia), the dimethylacetamide monosolvate, C4H5N3OS·C4H9NO, (Ib), the dimethylacetamide sesquisolvate, C4H5N3OS·1.5C4H9NO, (Ic), and two different 1-methylpyrrolidin-2-one sesquisolvates, C4H5N3OS·1.5C5H9NO, (Id) and (Ie). All structures containR21(6) N—H...O hydrogen-bond motifs. In the latter four structures, additionalR22(8) N—H...O hydrogen-bond motifs are present stabilizing homodimers of (I). No type of hydrogen bond other than N—H...O is observed. According to a search of the Cambridge Structural Database, most 2-thiouracil derivatives form homodimers stabilized by anR22(8) hydrogen-bonding pattern, with (i) only N—H...O, (ii) only N—H...S or (iii) alternating pairs of N—H...O and N—H...S hydrogen bonds.


Sign in / Sign up

Export Citation Format

Share Document