Chiral Molecular Alloys: Patterson-Search Structure Determination of L-Carvone and DL-Carvone from X-ray Powder Diffraction Data at 218 K

1997 ◽  
Vol 53 (4) ◽  
pp. 702-707 ◽  
Author(s):  
J. Sañé ◽  
J. Ruis ◽  
T. Calvet ◽  
M. A. Cuevas-Diarte

The crystal structures of pure L-carvone [(R)-(−)-2-methyl-5-(1-methylethenyl)-2-cyclohexen-1-one, C10H14O] and the equimolar mixture DL-carvone (RS) have been determined by Patterson-search methods at low resolution from laboratory X-ray powder diffraction data (218 K). Crystal data: (L) a = 6.8576 (3), b = 6.8831 (5), c = 19.988 (2) Å, P212121 space group, Z = 4; (DL) a = 6.9744 (3), b = 6.8094 (6), c = 20.038 (7) Å, Pcmn space group, Z = 4. The L-carvone structure has been refined by the Rietveld method as a rigid body, allowing the rotation of the isopropenyl group (R\rho, = 0.030 and R wp = 0.043). Although the structure of DL-carvone could be unambiguously established, the Rietveld refinement was not possible due to the existence of preferred orientation in the sample and the difficulty in modelling the disorder. The molecular packing is essentialy the same for both compounds and can be explained as a stacking of two different molecular layers in the [001] direction. In each layer the molecules are placed with their long axis perpendicular to the layer plane, in a head-to-tail manner. The great similarity between the molecular shapes of L and D enantiomers favours the positional disorder in DL-carvone. This result confirms the mixed crystal formation for the chiral carvone system as proposed in recent thermodynamic studies. The DL-carvone crystal must be considered as a pseudo-racemate, since both enantiomers are randomly distributed over all the lattice sites.

2009 ◽  
Vol 79-82 ◽  
pp. 593-596
Author(s):  
Feng Sun ◽  
Yan Sheng Yin

The ferroelectric ceramic BaTiO3 was synthesized at 1000 °C for 5 h. The structure of the system under study was refined on the basis of X-ray powder diffraction data using the Rietveld method. The system crystallizes in the space group P4mm(99). The refinement of instrumental and structural parameters led to reliable values for the Rp, Rwp and Rexp.We use the TOPAS software of Bruker AXS to refine this ceramic powders and show its conformation


1998 ◽  
Vol 13 (4) ◽  
pp. 196-201 ◽  
Author(s):  
J. A. Henao ◽  
J. M. Delgado ◽  
M. Quintero

The room temperature X-ray powder diffraction pattern of Fe2GeSe4, a II2 □ IV VI4 semiconducting compound, has been recorded and evaluated. This material was found to be orthorhombic, a=13.069(1), b=7.559(1), c=6.2037(6) Å, V=612.83(9) Å3, Z=4, Dx=5.42 gcm−3. The structure refinement carried out using the Rietveld method indicated that this material crystallizes in space group Pnma (No. 62) with an olivine type of structure. The refinement of 33 parameters led to RWP=15.3%, RP=10.2% for 5251 step intensities and RB=9.44% and RF=9.36% for 913 reflections.


1995 ◽  
Vol 10 (3) ◽  
pp. 159-164 ◽  
Author(s):  
Y. Laligant ◽  
A. Le Bail

The structure of [Pd(NH3)4]Cr2O7 has been determined ab initio from conventional X-Ray powder diffraction data by the Patterson method. The cell is monoclinic (space group P21/c, Z = 4), with a = 7.771(3) Å, b=11.578(1) Å, c=11.852(4) Å, and β= 105.50(4)°. Refinements of 57 parameters by the Rietveld method, using 852 reflections lead to RB = 0.032, RP = 0.075, and Rwp = 0.092. The structure is built up from PdN4 square planes linked to Cr2O7 groups by hydrogen bonds. Hydrogen atoms could not be located.


1993 ◽  
Vol 8 (1) ◽  
pp. 54-56 ◽  
Author(s):  
Peter C. Burns ◽  
Frank C. Hawthorne

The crystal structure of α-CoSO4 has been refined by the Rietveld method from X-ray powder diffraction data. The structure is orthorhombic, space group Pnma, a = 8.6127(4), b = 6.7058(3), c = 4.7399(2) Å, V = 273.75(3) Å3. Final RB = 2.41%, RP = 5.24%, RWP=6.66%, RWP (expected) =5.74% (WP =weighted profile). The structure consists of edge-sharing octahedral chains parallel to [010] interconnected by SO4 tetrahedra.


2015 ◽  
Vol 1089 ◽  
pp. 102-106
Author(s):  
Liu Qing Liang ◽  
Wen Jun Shen ◽  
Ling Min Zeng ◽  
Cai Min Huang

A new ternary compound TbCo0.67Ga1.33 was discovered and studied by means of X-ray powder diffraction technique. The crystal structure of the new compound was refined by using Rietveld method from X-ray powder diffraction data. This compound crystallizes in the orthorhombic with the CeCu2 structure type( space group Imma, a = 0.43384(6) nm, b = 0.70193(1) nm, c = 0.75617(1) nm, Z = 4, and Dcalc = 8.512 g/cm3 ). The Rietveld refinement results were Rp = 0.0996, Rwp = 0.1277.


2010 ◽  
Vol 25 (3) ◽  
pp. 247-252 ◽  
Author(s):  
F. Laufek ◽  
J. Návrátil

The crystal structure of skutterudite-related phase IrGe1.5Se1.5 has been refined by the Rietveld method from laboratory X-ray powder diffraction data. Refined crystallographic data for IrGe1.5Se1.5 are a=12.0890(2) Å, c=14.8796(3) Å, V=1883.23(6) Å3, space group R3 (No. 148), Z=24, and Dc=8.87 g/cm3. Its crystal structure can be derived from the ideal skutterudite structure (CoAs3), where Se and Ge atoms are ordered in layers perpendicular to the [111] direction of the original skutterudite cell. Weak distortions of the anion and cation sublattices were also observed.


1996 ◽  
Vol 11 (1) ◽  
pp. 26-27 ◽  
Author(s):  
Irena Georgieva ◽  
Ivan Ivanov ◽  
Ognyan Petrov

A new compound—Ba3MnSi2O8 in the system BaO–MnO–SiO2 was synthesized and studied by powder X-ray diffraction. The compound is hexagonal, space group—P6/mmm, a=5.67077 Å, c=7.30529 Å, Z=1, Dx=5.353. The obtained powder X-ray diffractometry (XRD) data were interpreted by the Powder Data Interpretation Package.


2021 ◽  
pp. 1-3
Author(s):  
J. Maixner ◽  
J. Ryšavý

X-ray powder diffraction data, unit-cell parameters, and space group for tetrazene nitrate monohydrate, C2H9N11O4, are reported [a = 5.205(1) Å, b = 13.932(3) Å, c = 14.196(4) Å, β = 97.826(3)°, unit-cell volume V = 1019.8(4) Å3, Z = 4, and space group P21/c]. All measured lines were indexed and are consistent with the P21/c space group. No detectable impurities were observed.


2015 ◽  
Vol 30 (3) ◽  
pp. 293-293 ◽  
Author(s):  
Qing Wang ◽  
Ying Xiao ◽  
Jia Wei He ◽  
Hui Li

X-ray powder diffraction data for 3,3-dichloro-1-(4-nitrophenyl)-2-piperidinone, C11H10Cl2N2O3, are reported [a = 11.088(4) Å, b = 11.594(5) Å, c = 12.689(3) Å, α = 118.456(1)°, β = 100.320(3)°, γ = 107.763(3)°, V = 1259.27 Å3, Z = 4 and space group P-1 ]. All measured lines were indexed and are consistent with the P-1 space group. No detectable impurities were observed.


1996 ◽  
Vol 11 (4) ◽  
pp. 301-304
Author(s):  
Héctor Novoa de Armas ◽  
Rolando González Hernández ◽  
José Antonio Henao Martínez ◽  
Ramón Poméz Hernández

p-nitrophenol, C6H5NO3, and disophenol, C6H3I2NO3, have been investigated by means of X-ray powder diffraction. The unit cell dimensions were determined from diffractometer methods, using monochromatic CuKα1 radiation, and evaluated by indexing programs. The monoclinic cell found for p-nitrophenol was a=6.159(2) Å, b=8.890(2) Å, c=11.770(2) Å, β=103.04(2)°, Z=4, space group P21 or P2l/m, Dx=1.469 Mg/m3. The monoclinic cell found for disophenol has the dimensions a=8.886(1) Å, b=14.088(2) Å, c=8.521(1) Å, β=91.11(1)°, Z=4, space group P2, P2, Pm or P2/m, Dx=2.438 Mg/m3.


Sign in / Sign up

Export Citation Format

Share Document